Back to Search Start Over

Simulating the forest fire plume dispersion, chemistry, and aerosol formation using SAM-ASP version 1.0

Authors :
C. R. Lonsdale
M. J. Alvarado
A. L. Hodshire
E. Ramnarine
J. R. Pierce
Source :
Geoscientific Model Development, Vol 13, Pp 4579-4593 (2020)
Publication Year :
2020
Publisher :
Copernicus Publications, 2020.

Abstract

Biomass burning is a major source of trace gases and aerosols that can ultimately impact health, air quality, and climate. Global and regional-scale three-dimensional Eulerian chemical transport models (CTMs) use estimates of the primary emissions from fires and can unphysically mix them across large-scale grid boxes, leading to incorrect estimates of the impact of biomass burning events. On the other hand, plume-scale process models allow for explicit simulation and examination of the chemical and physical transformations of trace gases and aerosols within biomass burning smoke plumes, and they may be used to develop parameterizations of this aging process for coarser grid-scale models. Here we describe the coupled SAM-ASP plume-scale process model, which consists of coupling the large-eddy simulation model, the System for Atmospheric Modelling (SAM), with the detailed gas and aerosol chemistry model, the Aerosol Simulation Program (ASP). We find that the SAM-ASP version 1.0 model is able to correctly simulate the dilution of CO in a California chaparral smoke plume, as well as the chemical loss of NOx, HONO, and NH3 within the plume, the formation of PAN and O3, the loss of OA, and the change in the size distribution of aerosols as compared to measurements and previous single-box model results. The newly coupled model is able to capture the cross-plume vertical and horizontal concentration gradients as the fire plume evolves downwind of the emission source. The integration and evaluation of SAM-ASP version 1.0 presented here will support the development of parameterizations of near-source biomass burning chemistry that can be used to more accurately simulate biomass burning chemical and physical transformations of trace gases and aerosols within coarser grid-scale CTMs.

Subjects

Subjects :
Geology
QE1-996.5

Details

Language :
English
ISSN :
1991959X and 19919603
Volume :
13
Database :
Directory of Open Access Journals
Journal :
Geoscientific Model Development
Publication Type :
Academic Journal
Accession number :
edsdoj.faeb0d7d2e2e43919e2b552e30910510
Document Type :
article
Full Text :
https://doi.org/10.5194/gmd-13-4579-2020