Back to Search
Start Over
Synthesis of Computationally Designed 2,5(6)-Benzimidazole Derivatives via Pd-Catalyzed Reactions for Potential E. coli DNA Gyrase B Inhibition
- Source :
- Molecules, Vol 26, Iss 5, p 1326 (2021)
- Publication Year :
- 2021
- Publisher :
- MDPI AG, 2021.
-
Abstract
- A pharmacophore model for inhibitors of Escherichia coli’s DNA Gyrase B was developed, using computer-aided drug design. Subsequently, docking studies showed that 2,5(6)-substituted benzimidazole derivatives are promising molecules, as they possess key hydrogen bond donor/acceptor groups for an efficient interaction with this bacterial target. Furthermore, 5(6)-bromo-2-(2-nitrophenyl)-1H-benzimidazole, selected as a core molecule, was prepared on a multi-gram scale through condensation of 4-bromo-1,2-diaminobenzene with 2-nitrobenzaldehyde using a sustainable approach. The challenging functionalization of the 5(6)-position was carried out via palladium-catalyzed Suzuki–Miyaura and Buchwald-Hartwig amination cross-coupling reactions between N-protected-5-bromo-2-nitrophenyl-benzimidazole and aryl boronic acids or sulfonylanilines, with yields up to 81%. The final designed molecules (2-(aminophen-2-yl)-5(6)-substituted-1H-benzimidazoles), which encompass the appropriate functional groups in the 5(6)-position according to the pharmacophore model, were obtained in yields up to 91% after acid-mediated N-boc deprotection followed by Pd-catalyzed hydrogenation. These groups are predicted to favor interactions with DNA gyrase B residues Asn46, Asp73, and Asp173, aiming to promote an inhibitory effect.
Details
- Language :
- English
- ISSN :
- 14203049
- Volume :
- 26
- Issue :
- 5
- Database :
- Directory of Open Access Journals
- Journal :
- Molecules
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.fb21e5e16e24137af1053ab1477df23
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/molecules26051326