Back to Search Start Over

TT-M Finite Element Algorithm for the Coupled Schrödinger–Boussinesq Equations

Authors :
Jiale Tian
Ziyu Sun
Yang Liu
Hong Li
Source :
Axioms, Vol 11, Iss 7, p 314 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

In this article, the coupled Schrödinger–Boussinesq equations are solved numerically using the finite element method combined with the time two-mesh (TT-M) fast algorithm. The spatial direction is discretized by the standard Galerkin finite element method, the temporal direction is approximated by the TT-M Crank–Nicolson scheme, and then the numerical scheme of TT-M finite element (FE) system is formulated. The method includes three main steps: for the first step, the nonlinear system is solved on the coarse time mesh; for the second step, by an interpolation formula, the numerical solutions at the fine time mesh point are computed based on the numerical solutions on the coarse mesh system; for the last step, the linearized temporal fine mesh system is constructed based on Taylor’s formula for two variables, and then the TT-M FE solutions can be obtained. Furthermore, theory analyses on the TT-M system including the stability and error estimations are conducted. Finally, a large number of numerical examples are provided to verify the accuracy of the algorithm, the correctness of theoretical results, and the computational efficiency with a comparison to the numerical results calculated by using the standard FE method.

Details

Language :
English
ISSN :
20751680
Volume :
11
Issue :
7
Database :
Directory of Open Access Journals
Journal :
Axioms
Publication Type :
Academic Journal
Accession number :
edsdoj.fb263a2cc93f411cb518c549bfcfeca2
Document Type :
article
Full Text :
https://doi.org/10.3390/axioms11070314