Back to Search Start Over

Pathophysiological Role of Microglial Activation Induced by Blood-Borne Proteins in Alzheimer’s Disease

Authors :
Sehwan Kim
Chanchal Sharma
Un Ju Jung
Sang Ryong Kim
Source :
Biomedicines, Vol 11, Iss 5, p 1383 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

The blood–brain barrier (BBB) restricts entry of neurotoxic plasma components, blood cells, and pathogens into the brain, leading to proper neuronal functioning. BBB impairment leads to blood-borne protein infiltration such as prothrombin, thrombin, prothrombin kringle-2, fibrinogen, fibrin, and other harmful substances. Thus, microglial activation and release of pro-inflammatory mediators commence, resulting in neuronal damage and leading to impaired cognition via neuroinflammatory responses, which are important features observed in the brain of Alzheimer’s disease (AD) patients. Moreover, these blood-borne proteins cluster with the amyloid beta plaque in the brain, exacerbating microglial activation, neuroinflammation, tau phosphorylation, and oxidative stress. These mechanisms work in concert and reinforce each other, contributing to the typical pathological changes in AD in the brain. Therefore, the identification of blood-borne proteins and the mechanisms involved in microglial activation and neuroinflammatory damage can be a promising therapeutic strategy for AD prevention. In this article, we review the current knowledge regarding the mechanisms of microglial activation-mediated neuroinflammation caused by the influx of blood-borne proteins into the brain via BBB disruption. Subsequently, the mechanisms of drugs that inhibit blood-borne proteins, as a potential therapeutic approach for AD, along with the limitations and potential challenges of these approaches, are also summarized.

Details

Language :
English
ISSN :
22279059
Volume :
11
Issue :
5
Database :
Directory of Open Access Journals
Journal :
Biomedicines
Publication Type :
Academic Journal
Accession number :
edsdoj.fb494a57fc45e1a14157b887e5ccd3
Document Type :
article
Full Text :
https://doi.org/10.3390/biomedicines11051383