Back to Search Start Over

Species delimitation of tea plants (Camellia sect. Thea) based on super-barcodes

Authors :
Yinzi Jiang
Junbo Yang
Ryan A. Folk
Jianli Zhao
Jie Liu
Zhengshan He
Hua Peng
Shixiong Yang
Chunlei Xiang
Xiangqin Yu
Source :
BMC Plant Biology, Vol 24, Iss 1, Pp 1-12 (2024)
Publication Year :
2024
Publisher :
BMC, 2024.

Abstract

Abstract Background The era of high throughput sequencing offers new paths to identifying species boundaries that are complementary to traditional morphology-based delimitations. De novo species delimitation using traditional or DNA super-barcodes serve as efficient approaches to recognizing putative species (molecular operational taxonomic units, MOTUs). Tea plants (Camellia sect. Thea) form a group of morphologically similar species with significant economic value, providing the raw material for tea, which is the most popular nonalcoholic caffeine-containing beverage in the world. Taxonomic challenges have arisen from vague species boundaries in this group. Results Based on the most comprehensive sampling of C. sect. Thea by far (165 individuals of 39 morphospecies), we applied three de novo species delimitation methods (ASAP, PTP, and mPTP) using plastome data to provide an independent evaluation of morphology-based species boundaries in tea plants. Comparing MOTU partitions with morphospecies, we particularly tested the congruence of MOTUs resulting from different methods. We recognized 28 consensus MOTUs within C. sect. Thea, while tentatively suggesting that 11 morphospecies be discarded. Ten of the 28 consensus MOTUs were uncovered as morphospecies complexes in need of further study integrating other evidence. Our results also showed a strong imbalance among the analyzed MOTUs in terms of the number of molecular diagnostic characters. Conclusion This study serves as a solid step forward for recognizing the underlying species boundaries of tea plants, providing a needed evidence-based framework for the utilization and conservation of this economically important plant group.

Details

Language :
English
ISSN :
14712229
Volume :
24
Issue :
1
Database :
Directory of Open Access Journals
Journal :
BMC Plant Biology
Publication Type :
Academic Journal
Accession number :
edsdoj.fb4a7eb6d9b44362b2b5dd1b1e379b62
Document Type :
article
Full Text :
https://doi.org/10.1186/s12870-024-04882-3