Back to Search
Start Over
Characterization of Sinomonas gamaensis sp. nov., a Novel Soil Bacterium with Antifungal Activity against Exserohilum turcicum
- Source :
- Microorganisms, Vol 7, Iss 6, p 170 (2019)
- Publication Year :
- 2019
- Publisher :
- MDPI AG, 2019.
-
Abstract
- A novel Gram staining positive, aerobic bacterium NEAU-HV1T that exhibits antifungal activity against Exserohilum turcicum was isolated from a soil collected from Gama, Hadjer lamis, Chad. It was grown at 10−45 °C (optimum 30 °C), pH 5−10 (optimum pH 8), and 0−4% (w/v) NaCl (optimum 1%). Phylogenetic analysis based on 16S rRNA gene sequences showed that strain NEAU-HV1T was closely related to Sinomonas susongensis A31T (99.24% sequence similarity), Sinomonas humi MUSC 117T (98.76%), and Sinomonas albida LC13T (98.68%). The average nucleotide identity values between NEAU-HV1T and its most closely related species were 79.34−85.49%. The digital DNA−DNA hybridization values between NEAU-HV1T and S. susongensis A31T, S. albida LC13T, and S. humi MUSC 117T were 23.20, 23.50, and 22.80%, respectively, again indicating that they belonged to different taxa. The genomic DNA G+C content was 67.64 mol%. The whole cell sugars contained galactose, mannose, and rhamnose. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, and four glycolipids. The respiratory quinone system comprised MK-9(H2), MK-10(H2), and MK-8(H2). The major cellular fatty acids (>5%) were anteiso-C15:0, anteiso-C17:0, C16:0, and iso-C15:0. Based on the polyphasic analysis, it is suggested that the strain NEAU-HV1T represents a novel species of the genus Sinomonas, for which the name Sinomonas gamaensis sp. nov. is proposed. The type strain is NEAU-HV1T (= DSM 104514T = CCTCC M 2017246T).
Details
- Language :
- English
- ISSN :
- 20762607
- Volume :
- 7
- Issue :
- 6
- Database :
- Directory of Open Access Journals
- Journal :
- Microorganisms
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.fc9bd8847c4f495e9f896fa8858fc266
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/microorganisms7060170