Back to Search
Start Over
Nitric Oxide and Small and Intermediate Calcium-Activated Potassium Channels Mediate the Vasodilation Induced by Apigenin in the Resistance Vessels of Hypertensive Rats
- Source :
- Molecules, Vol 29, Iss 22, p 5425 (2024)
- Publication Year :
- 2024
- Publisher :
- MDPI AG, 2024.
-
Abstract
- Background: Apigenin (4′,5,7-trihydroxyflavone), a flavonoid with potential cardiovascular benefits, has unclear mechanisms of action. This study investigates its effects on vascular function in Spontaneously Hypertensive Rats (SHRs). Methods: Mesenteric vascular beds (MVBs) were isolated from SHRs and perfused with increasing doses of apigenin after pre-contraction with phenylephrine. To explore the mechanisms, different MVBs were pre-perfused with antagonists and inhibitors, including indomethacin, L-NAME, and potassium channel blockers (tetraethylammonium, a non-specific potassium channel blocker; glibenclamide, an ATP-sensitive potassium channel blocker; 4-aminopyridine, a voltage-gated potassium channel blocker; charybdotoxin a selective intermediate-conductance calcium-activated potassium channel blocker; and apamin, a selective small-conductance calcium-activated potassium channel blocker). Results: Apigenin induced a dose-dependent reduction in perfusion pressure in MVBs with intact endothelium, an effect abolished by endothelium removal. L-NAME reduced apigenin-induced vasodilation by approximately 40%. The vasodilatory effect was blocked by potassium chloride and tetraethylammonium. The inhibition of small and intermediate calcium-activated potassium channels with charybdotoxin and apamin reduced apigenin-induced vasodilation by 50%, and a combination of these blockers with L-NAME completely inhibited the effect. Conclusions: Apigenin promotes vasodilation in resistance arteries through endothelial nitric oxide and calcium-activated potassium channels. These findings suggest that apigenin could have therapeutic potential in cardiovascular disease, warranting further clinical research.
Details
- Language :
- English
- ISSN :
- 14203049
- Volume :
- 29
- Issue :
- 22
- Database :
- Directory of Open Access Journals
- Journal :
- Molecules
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.fd0ec0ab8e04b718b3bbca7affbd9e6
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/molecules29225425