Back to Search Start Over

Length effects on the dynamic process of cellular uptake and exocytosis of single-walled carbon nanotubes in murine macrophage cells

Authors :
Xuejing Cui
Bin Wan
Yu Yang
Xiaomin Ren
Liang-Hong Guo
Source :
Scientific Reports, Vol 7, Iss 1, Pp 1-13 (2017)
Publication Year :
2017
Publisher :
Nature Portfolio, 2017.

Abstract

Abstract Cellular uptake and exocytosis of SWCNTs are fundamental processes determining their intracellular concentration and effects. Despite the great potential of acid-oxidized SWCNTs in biomedical field, understanding of the influencing factors on these processes needs to be deepened. Here, we quantitatively investigated uptake and exocytosis of SWCNTs in three lengths-630 (±171) nm (L-SWCNTs), 390 (±50) nm (M-SWCNTs), and 195 (±63) nm (S-MWCNTs) in macrophages. The results showed that the cellular accumulation of SWCNTs was a length-independent process and non-monotonic in time, with the most SWCNTs (3950 fg/cell) accumulated at 8 h and then intracellular SWCNTs dropped obviously with time. The uptake rate of SWCNTs decreased with increasing concentration, suggesting that intracellular SWCNTs accumulation is a saturable process. After refreshing culture medium, we found increasing SWCNTs in supernatant and decreasing intracellular SWCNTs over time, confirming the exocytosis occurred. Selective inhibition of endocytosis pathways showed that the internalization of SWCNTs involves several pathways, in the order of macropinocytosis> caveolae-mediated endocytosis> clathrin-dependent endocytosis. Intriguingly, clathrin-mediated endocytosis is relatively important for internalizing shorter SWCNTs. The dynamic processes of SWCNTs uptake and exocytosis and the mechanisms revealed by this study may render a better understanding on SWCNT toxicity and facilitate the design of CNT products with mitigated toxicity and desired functions.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
7
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.fe4695ce48d4461c9e13714fd38cad20
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-017-01746-9