Back to Search Start Over

A Neural Network-based Approach to Prediction of Preterm Birth using Non-invasive Tests

Authors :
Masoumeh Mirzamoradi
Hamid Mokhtari Torshizi
Masoumeh Abaspour
Atefeh Ebrahimi
Ali Ameri
Source :
Journal of Biomedical Physics and Engineering, Vol 14, Iss 5, Pp 503-508 (2024)
Publication Year :
2024
Publisher :
Shiraz University of Medical Sciences, 2024.

Abstract

Background: One of the main reasons for neonatal deaths is preterm delivery, and infants who have survived preterm birth (PB) are at risk of significant health complications. However, an effective method for reliable and accurate prediction of preterm labor has yet to be proposed.Objective: This study proposes an artificial neural network (ANN)-based approach for early prediction of PB, and consequently can hint physicians to start the treatment earlier, reducing the chance of morbidity and mortality in the infant.Material and Methods: This historical cohort study proposes a feed-forward ANN with 7 hidden neurons to predict PB. Thirteen risk factors of PB were collected from 300 pregnant women (150 with preterm delivery and 150 normal) as the ANN inputs from 2018 to 2019. From each group, 70%, 15%, and 15% of the subjects were randomly selected for training, validation, and testing of the model, respectively.Results: The ANN achieved an accuracy of 79.03% for the classification of the subjects into two classes normal and PB. Moreover, a sensitivity of 73.45% and specificity of 84.62% were obtained. The advantage of this approach is that the risk factors used for prediction did not require any lab test and were collected in a questionnaire. Conclusion: The efficacy of the proposed approach for the early identification of pregnant women, who are at high risk of preterm delivery, leads to necessary care and clinical interventions, applied during the pregnancy.

Details

Language :
English
ISSN :
22517200
Volume :
14
Issue :
5
Database :
Directory of Open Access Journals
Journal :
Journal of Biomedical Physics and Engineering
Publication Type :
Academic Journal
Accession number :
edsdoj.fedc627eb014619a139038d4c34ee89
Document Type :
article
Full Text :
https://doi.org/10.31661/jbpe.v0i0.2201-1449