Back to Search Start Over

A novel anti-loosening bolt looseness diagnosis of bolt connections using a vision-based technique

Authors :
Jun Luo
Kaili Li
ChengQian Xie
Zhitao Yan
Feng Li
Xiaogang Jia
Yuanlai Wang
Source :
Scientific Reports, Vol 14, Iss 1, Pp 1-14 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Bolt looseness detection is a common problem in engineering. Most vision-based detection techniques focus on diagnosing ordinary bolt looseness, i.e., the methods used for diagnosis are based only on the sidelines of nuts. These methods cannot be used for anti-loosening bolt looseness diagnosis because of the simultaneous rotation of screws and nuts. Therefore, a novel anti-loosening bolt looseness diagnosis method based on a vision-based technique is proposed in this paper. First, a regular hexagonal cap was installed on the screw, which can be used as a reference for the nut. Then, to automatically distinguish the hexagonal borders of the screw cap and nut, a new hexagonal border reconstruction algorithm is proposed. Furthermore, the relative rotation angles of the screw cap and nut hexagons can be determined using the sidelines of the reconstructed hexagonal borders of the screw cap and nut. Finally, a novel anti-loosening bolt looseness diagnosis method is established by using the relative rotation angle of the regular hexagonal borders of the screw cap and nut under initial status and loose status. A prototype flange node of the transmission tower was used for experimental verification. The results show that the proposed method can effectively detect the loosening angle of anti-loosening bolts.

Details

Language :
English
ISSN :
20452322
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.fef8f0dd78294548b736e25764df37ba
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-024-62560-8