Back to Search Start Over

Applying Improved Particle Swarm Optimization to Asynchronous Parallel Disassembly Planning

Authors :
Hwai-En Tseng
Chien-Cheng Chang
Ting-Wei Chung
Source :
IEEE Access, Vol 10, Pp 80555-80564 (2022)
Publication Year :
2022
Publisher :
IEEE, 2022.

Abstract

Disassembly Planning (DP) refers to an optimization method to find the most cost-effective disassembly sequence for products based on the disassembly properties of parts. In traditional sequential disassembly planning, only a single part or component is removed. To effectively improve the product disassembly efficiency, this study explores the problem of Asynchronous Parallel Disassembly Planning (aPDP) with multiple manipulators. In the aPDP situation where multiple manipulators are used, the optimization method of arranging the manipulators needs to be considered in addition to the limitation of the priority order of parts. This study proposes an improved particle swarm optimization to discuss the aPDP combination optimization problem. The minimum Make Span is the objective, and the solution status and convergence speed are compared with the results of other particle swarm optimization methods, a Genetic Algorithm and Ant Colony Optimization. The results show that the proposed improved version of the particle swarm optimization algorithm has better solution quality and execution time.

Details

Language :
English
ISSN :
21693536
Volume :
10
Database :
Directory of Open Access Journals
Journal :
IEEE Access
Publication Type :
Academic Journal
Accession number :
edsdoj.ff17af599f8442c953a4e83a1423093
Document Type :
article
Full Text :
https://doi.org/10.1109/ACCESS.2022.3195863