Back to Search Start Over

Circular RNA circNTRK2 facilitates the progression of esophageal squamous cell carcinoma through up-regulating NRIP1 expression via miR-140-3p

Authors :
Xiaoqi Chen
Jing Jiang
Yunxia Zhao
Xinting Wang
Chuanlei Zhang
Lv Zhuan
Danyang Zhang
Yuling Zheng
Source :
Journal of Experimental & Clinical Cancer Research, Vol 39, Iss 1, Pp 1-14 (2020)
Publication Year :
2020
Publisher :
BMC, 2020.

Abstract

Abstract Background Esophageal squamous cell carcinoma (ESCC) is one of the most prevalent gastrointestinal malignancies with high mortality. Circular RNAs (CircRNAs) have become a research hotspot in recent years for their vital roles in cancer development and progression. This study aims to clarify the roles of circNTRK2 and its underlying molecular mechanisms in ESCC. Methods The levels of circNTRK2, miR-140-3p, and nuclear receptor-interacting protein 1 (NRIP1) mRNA were examined by qRT-PCR. The cell proliferation ability was detected via CCK-8, EdU and colony formation assays. The invasion capacity was tested by using transwell assay. The apoptotic rate was evaluated through flow cytometry. The protein levels of cleaved PARP, cleaved caspase-3, E-cadherin, vimentin, and NRIP1 were measured by western blot assay. The validation of circular structure was performed by Sanger sequencing, divergent primer PCR, and RNase R treatments. The ceRNA regulatory mechanism of circNTRK2 was observed via dual-luciferase reporter, RIP and RNA pull-down assays. The mice xenograft models were constructed to confirm the oncogenicity of circNTRK2 in ESCC in vivo. Results CircNTRK2 was highly expressed in ESCC tissues and cells. High expression of circNTRK2 was correlated with advanced TNM stage, lymph node metastasis and short survival. Knockdown of circNTRK2 inhibited ESCC cell proliferation, invasion and epithelial-mesenchymal transition (EMT), and accelerated apoptosis in vitro. Mechanistic assays disclosed that circNTRK2 could act as a sponge for miR-140-3p to abate its suppression on target NRIP1 expression. Moreover, miR-140-3p-induced inhibitory effects on ESCC cell malignant phenotypes were attenuated by the overexpression of circNTRK2. In addition, depletion of NRIP1 impeded cell proliferation, invasion and EMT, while enhanced apoptosis. Furthermore, silencing of circNTRK2 suppressed cell proliferation and invasion through regulating NRIP1 expression. Also, knockdown of circNTRK2 slowed ESCC tumor growth in vivo. Conclusion CircNTRK2 promoted ESCC progression by regulating miR-140-3p/NRIP1 pathway. Our findings contribute to a better understanding of circRNAs as miRNA sponges and highlight a promising therapy target in ESCC.

Details

Language :
English
ISSN :
17569966
Volume :
39
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Journal of Experimental & Clinical Cancer Research
Publication Type :
Academic Journal
Accession number :
edsdoj.ff4f6b17aa8d417aa44671eacc12f0b1
Document Type :
article
Full Text :
https://doi.org/10.1186/s13046-020-01640-9