Sorry, I don't understand your search. ×
Back to Search Start Over

Mid- and High-Latitude Electron Temperature Dependence on Solar Activity in the Topside Ionosphere through the Swarm B Satellite Observations and the International Reference Ionosphere Model

Mid- and High-Latitude Electron Temperature Dependence on Solar Activity in the Topside Ionosphere through the Swarm B Satellite Observations and the International Reference Ionosphere Model

Authors :
Alessio Pignalberi
Vladimir Truhlik
Fabio Giannattasio
Igino Coco
Michael Pezzopane
Source :
Atmosphere, Vol 15, Iss 4, p 490 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

This study focuses on the open question of the electron temperature (Te) variation with solar activity in the topside ionosphere at mid- and high latitudes. It takes advantage of in situ observations taken over a decade (2014–2023) from Langmuir probes on board the low-Earth-orbit Swarm B satellite and spanning an altitude range of 500–530 km. The study also includes a comparison with Te values modeled using the International Reference Ionosphere (IRI) model and with Millstone Hill (42.6° N. 71.5° W) incoherent scatter radar observations. The largest Te variation with solar activity was found at high latitudes in the winter season, where Te shows a marked decreasing trend with solar activity in the polar cusp and auroral regions and, more importantly, at sub-auroral latitudes in the nightside sector. Differently, in the summer season, Te increases with solar activity in the polar cusp and auroral regions, while for equinoxes, variations are smaller and less clear. Mid-latitudes generally show negligible Te variations with solar activity, which are mostly within the natural dispersion of Te observations. The comparison between measured and modeled values highlighted that future implementations of the IRI model would benefit from an improved description of the Te dependence on solar activity, especially at high latitudes.

Details

Language :
English
ISSN :
20734433
Volume :
15
Issue :
4
Database :
Directory of Open Access Journals
Journal :
Atmosphere
Publication Type :
Academic Journal
Accession number :
edsdoj.ff5c01d31db843188317da610a87cf1d
Document Type :
article
Full Text :
https://doi.org/10.3390/atmos15040490