Back to Search Start Over

Network construction of aberrantly expressed miRNAs and their target mRNAs in ventricular myocardium with ischemia–reperfusion arrhythmias

Authors :
Jian Tang
Hong Gao
Yanqiu Liu
Jing Song
Yurong Feng
Guilong Wang
Youqin He
Source :
Journal of Cardiothoracic Surgery, Vol 15, Iss 1, Pp 1-11 (2020)
Publication Year :
2020
Publisher :
BMC, 2020.

Abstract

Abstract Background Hypothermic ischemia-reperfusion arrhythmia remains the main factor affecting cardiac resuscitation under cardiopulmonary bypass. Existing research shows that certain miRNAs exhibit significantly different expressions and effects in arrhythmias, however, the effect of miRNAs on the progression of hypothermic ischemic–reperfusion arrhythmias (RA) and its potential mechanism remain to be further explored. Methods Sprague-Dawley (SD) rats were randomly divided into two groups (n = 8): a normal control group (Group C) and a hypothermic ischemia-reperfusion group (Group IR), which were used to establish a Langendorff isolated cardiac perfusion model. According to the arrhythmia scoring system, rats in group IR were divided into a high-risk group (IR-H) and a low-risk group (IR-L). miRNAs expression profiles of ventricular myocardium with global hypothermic ischemia–reperfusion and those of ventricular myocardium with hypothermic ischemia–RA were established through high-throughput sequencing. Furthermore, the aberrantly expressed miRNAs in myocardium with and without hypothermic ischemia–RA were screened and verified. The target genes of these aberrantly expressed miRNAs were predicted using RNAhybrid and MiRanda software. Based on Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, we determined the mRNA targets associated with these miRNAs and studied the miRNA–mRNA interaction during the cardiovascular disease progression. The aberrantly expressed miRNAs related to hypothermic ischemia–RA were validated by Real-time Quantitative polymerase chain reaction (RT-qPCR). Results Eight significantly aberrantly expressed miRNAs (rno-miR-122-5p, rno-miR-429, novel_miR-1, novel_miR-16, novel_miR-17, novel_miR-19, novel_miR-30, and novel_miR-43) were identified, among which six were up-regulated and two were down-regulated. Moreover, target genes and signaling pathways associated with these aberrantly expressed miRNAs were predicted and analyzed. The miRNA–mRNA interaction network graph showed that GJA1 gene was considered as the target of novel_miR-17. Conclusions Aberrantly expressed miRNAs were possibly associated with the formation mechanism of hypothermic ischemia–RA. Specific miRNAs, such as novel_miR-17 and rno-miR-429 are probably new potential targets for further functional studies of hypothermic ischemia–RA.

Details

Language :
English
ISSN :
17498090
Volume :
15
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Journal of Cardiothoracic Surgery
Publication Type :
Academic Journal
Accession number :
edsdoj.ff5e8b93eb3a4d45b10647d162043684
Document Type :
article
Full Text :
https://doi.org/10.1186/s13019-020-01262-4