Back to Search Start Over

Azoramide ameliorates cadmium-induced cytotoxicity by inhibiting endoplasmic reticulum stress and suppressing oxidative stress

Authors :
Lingmin Zhang
Jianguo Zhang
Yingying Zhou
Qingqing Xia
Jing Xie
Bihong Zhu
Yang Wang
Zaixing Yang
Jie Li
Source :
PeerJ, Vol 12, p e16844 (2024)
Publication Year :
2024
Publisher :
PeerJ Inc., 2024.

Abstract

Background Cadmium (Cd) is hazardous to human health because of its cytotoxicity and long biological half-life. Azoramide is a small molecular agent that targets the endoplasmic reticulum (ER) and moderates the unfolded protein response. However, its role in Cd-induced cytotoxicity remains unclear. This study was performed to investigate the protective effect of azoramide against Cd-induced cytotoxicity and elucidate its underlying mechanisms. Methods Inductively coupled plasma‒mass spectrometry was used to measure Cd concentrations in each tissue of ICR male mice. The human proximal tubule epithelial cell line HK-2 and the human retinal pigment epithelial cell line ARPE-19 were used in the in vitro study. Cell apoptosis was determined by DAPI staining, JC-1 staining, and annexin V/propidium iodide double staining. Intracellular oxidative stress was detected by MitoSOX red staining, western blot, and quantitative real-time PCR. Moreover, ER stress signaling, MAPK cascades, and autophagy signaling were analyzed by western blot. Results The present data showed that Cd accumulated in various organs of ICR mice, and the concentrations of Cd in the studied organs, from high to low, were as follows: liver > kidney > testis > lung > spleen > eye. Our study demonstrated that azoramide inhibited ER stress by promoting BiP expression and suppressing the PERK-eIF2α-CHOP pathway. Additionally, we also found that azoramide significantly decreased ER stress-associated radical oxidative species production, attenuated p38 MAPK and JNK signaling, and inhibited autophagy, thus suppressing apoptosis in HK-2 and ARPE-19 cells. Conclusion Our study investigated the effect of azoramide on Cd-induced cytotoxicity and revealed that azoramide may be a therapeutic drug for Cd poisoning.

Details

Language :
English
ISSN :
21678359
Volume :
12
Database :
Directory of Open Access Journals
Journal :
PeerJ
Publication Type :
Academic Journal
Accession number :
edsdoj.ff914f1248ed41bda4fd1fd69dae8709
Document Type :
article
Full Text :
https://doi.org/10.7717/peerj.16844