Back to Search Start Over

Immobilization of Fe-Doped Ni2P Particles Within Biomass Agarose-Derived Porous N,P-Carbon Nanosheets for Efficient Bifunctional Oxygen Electrocatalysis

Authors :
Yifan Xiao
Sihui Deng
Meng Li
Qixing Zhou
Libang Xu
Huaifang Zhang
Dongmei Sun
Yawen Tang
Source :
Frontiers in Chemistry, Vol 7 (2019)
Publication Year :
2019
Publisher :
Frontiers Media S.A., 2019.

Abstract

A feasible and green sol-gel method is proposed to fabricate well-distributed nano-particulate Fe-Ni2P incorporated in N, P-codoped porous carbon nanosheets (Fe-Ni2P@N,P-CNSs) using biomass agarose as a carbon source, and ethylenediamine tetra (methylenephosphonic acid) (EDTMPA) as both the N and P source. The doped Fe in Ni2P is essential for a substantial increase in intrinsic catalytic activity, while the combined N,P-containing porous carbon matrix with a better degree of graphitization endows the prepared Fe-Ni2P@N,P-CNSs catalyst with a high specific surface area and improved electrical conductivity. Benefiting from the specific chemical composition and designed active site structure, the as-synthesized Fe-Ni2P@N,P-CNSs manifests a satisfying catalytic performance toward both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in an alkaline solution, with low overpotential, small Tafel slope and long-term durability, relative to the counterparts (Fe-free Ni12P5/Ni2P2O7@N,P-CNSs and CNSs) with single components and even comparable to Pt/C and RuO2 catalysts. The present work broadens the exploration of efficient bifunctional oxygen electrocatalysts using earth abundant biomass as carbon sources based on non-noble metals for low cost renewable energy conversion/storage.

Details

Language :
English
ISSN :
22962646
Volume :
7
Database :
Directory of Open Access Journals
Journal :
Frontiers in Chemistry
Publication Type :
Academic Journal
Accession number :
edsdoj.ff99e5c47914e8481dfdc381ea887e8
Document Type :
article
Full Text :
https://doi.org/10.3389/fchem.2019.00523