Back to Search Start Over

A Prediction Model for Soil–Water Characteristic Curve Based on Machine Learning Considering Multiple Factors

Authors :
Guangchang Yang
Jianping Liu
Yang Liu
Nan Wu
Tingguang Liu
Source :
Buildings, Vol 14, Iss 7, p 2087 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

Aiming at the problem of long soil–water characteristic curve (SWCC) testing times and the difficulty of prediction accuracy in complex environments, this paper establishes a SWCC prediction model based on a neural network machine learning algorithm which can take into account the influence of multiple factors such as temperature, deformation, and salinity. The input layer of the model can reflect the physical properties of the soil and the influence of the external environment, while the suction is taken as an input variable, which in turn can directly obtain the water content under the corresponding conditions. The predictive ability of the model is verified by comparing and analyzing the predicted results of the SWCC under different temperature, void ratio, and salinity conditions with the experimental results. The research in this paper provides a new method for predicting the SWCC considering multiple factors, and the prediction accuracy of the model is related to the amount of experimental data.

Details

Language :
English
ISSN :
20755309
Volume :
14
Issue :
7
Database :
Directory of Open Access Journals
Journal :
Buildings
Publication Type :
Academic Journal
Accession number :
edsdoj.ffd01c9ba00d4e93aaf126b4d7e47443
Document Type :
article
Full Text :
https://doi.org/10.3390/buildings14072087