Back to Search Start Over

Immune2vec: Embedding B/T Cell Receptor Sequences in ℝN Using Natural Language Processing

Authors :
Miri Ostrovsky-Berman
Boaz Frankel
Pazit Polak
Gur Yaari
Source :
Frontiers in Immunology, Vol 12 (2021)
Publication Year :
2021
Publisher :
Frontiers Media S.A., 2021.

Abstract

The adaptive branch of the immune system learns pathogenic patterns and remembers them for future encounters. It does so through dynamic and diverse repertoires of T- and B- cell receptors (TCR and BCRs, respectively). These huge immune repertoires in each individual present investigators with the challenge of extracting meaningful biological information from multi-dimensional data. The ability to embed these DNA and amino acid textual sequences in a vector-space is an important step towards developing effective analysis methods. Here we present Immune2vec, an adaptation of a natural language processing (NLP)-based embedding technique for BCR repertoire sequencing data. We validate Immune2vec on amino acid 3-gram sequences, continuing to longer BCR sequences, and finally to entire repertoires. Our work demonstrates Immune2vec to be a reliable low-dimensional representation that preserves relevant information of immune sequencing data, such as n-gram properties and IGHV gene family classification. Applying Immune2vec along with machine learning approaches to patient data exemplifies how distinct clinical conditions can be effectively stratified, indicating that the embedding space can be used for feature extraction and exploratory data analysis.

Details

Language :
English
ISSN :
16643224
Volume :
12
Database :
Directory of Open Access Journals
Journal :
Frontiers in Immunology
Publication Type :
Academic Journal
Accession number :
edsdoj.ffdc35f4f0eb4a68ab9fd6316f403044
Document Type :
article
Full Text :
https://doi.org/10.3389/fimmu.2021.680687