Back to Search Start Over

Evolution of Microstructure, Properties, and Fracture Behavior with Annealing Temperature in Complex Phase Steel with High Formability

Authors :
Xiaohong Chu
Feng Zhou
Lei Liu
Xiaolong Xu
Xiaoyue Ma
Weinan Li
Zhengzhi Zhao
Source :
Metals, Vol 14, Iss 4, p 380 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

In recent years, with the continuous improvement in the requirements for automobile steel formability, complex phase steel with high formability (CH steel) has been widely used. In the present study, the microstructure of CH steel was regulated using the actual production process as a basis and annealing temperature as a variable, and the effects of annealing temperature on the microstructure, properties, and fracture behavior of CH steel were analyzed. As the annealing temperature increases, the ferrite content decreases from 36.3% to 0, the martensite content decreases from 49.3% to 8.8%, the bainite content increases from 11.9% to 87.1%, and the retained austenite content first increases and then decreases within the range of 2.5~5.1%. Consequently, the tensile strength shows a decreasing trend, the yield strength first decreases and then increases, and the total elongation and the hole expansion ratio first increase and then decrease. The deformation coordination of each phase gradually becomes better, and the voids and cracks in the tensile and hole expansion samples expand along the ferrite and martensite or martensite/austenite (M/A) island interface, transforming into the bainitic ferrite and martensite or M/A islands. The test steel’s best tensile and hole expansion properties occur at annealing temperatures of 940 °C.

Details

Language :
English
ISSN :
20754701
Volume :
14
Issue :
4
Database :
Directory of Open Access Journals
Journal :
Metals
Publication Type :
Academic Journal
Accession number :
edsdoj.ffef2c82eda94cab968d383fc56ee6df
Document Type :
article
Full Text :
https://doi.org/10.3390/met14040380