Back to Search Start Over

Evaluation of positioning accuracy, radiation dose and image quality: artificial intelligence based automatic versus manual positioning for CT KUB [version 1; peer review: awaiting peer review]

Authors :
Souradip Kundu
Kaushik Nayak
Rajagopal Kadavigere
Saikiran Pendem
Priyanka .
Author Affiliations :
<relatesTo>1</relatesTo>Department of Medical Imaging Technology, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India<br /><relatesTo>2</relatesTo>Department of Radio Diagnosis and Imaging, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
Source :
F1000Research. 13:683
Publication Year :
2024
Publisher :
London, UK: F1000 Research Limited, 2024.

Abstract

Background Recent innovations are making radiology more advanced for patient and patient services. Under the immense burden of radiology practice, Artificial Intelligence (AI) assists in obtaining Computed Tomography (CT) images with less scan time, proper patient placement, low radiation dose (RD), and improved image quality (IQ). Hence, the aim of this study was to evaluate and compare the positioning accuracy, RD, and IQ of AI-based automatic and manual positioning techniques for CT kidney ureters and bladder (CT KUB). Methods This prospective study included 143 patients in each group who were referred for computed tomography (CT) KUB examination. Group 1 patients underwent manual positioning (MP), and group 2 patients underwent AI-based automatic positioning (AP) for CT KUB examination. The scanning protocol was kept constant for both the groups. The off-center distance, RD, and quantitative and qualitative IQ of each group were evaluated and compared. Results The AP group (9.66±6.361 mm) had significantly less patient off-center distance than the MP group (15.12±9.55 mm). There was a significant reduction in RD in the AP group compared with that in the MP group. The quantitative image noise (IN) was lower, with a higher signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) in the AP group than in the MP group (p Conclusions The AI-based AP showed higher positioning accuracy with less off-center distance (44%), which resulted in 12% reduction in RD and improved IQ for CT KUB imaging compared with MP.

Details

ISSN :
20461402
Volume :
13
Database :
F1000Research
Journal :
F1000Research
Notes :
[version 1; peer review: awaiting peer review]
Publication Type :
Academic Journal
Accession number :
edsfor.10.12688.f1000research.150779.1
Document Type :
research-article
Full Text :
https://doi.org/10.12688/f1000research.150779.1