Back to Search Start Over

Effect of resonant transition on efficiency of forward converter with active clamp and self-driven SRs

Authors :
Tuomainen, Vesa
Kyyra, Jorma
Source :
IEEE Transactions on Power Electronics. March, 2005, Vol. 20 Issue 2, p315, 9 p.
Publication Year :
2005

Abstract

Forward converter with active clamp is a suitable topology for a low output voltage and high output current dc-dc power supply module. The topology can be used in a resonant transition manner to obtain a low voltage over the main switch at turn-on instant. A low voltage can be obtained by adjusting the magnitude of the magnetizing current of the transformer and the delay between the two primary side switches. An increased magnetizing current, however, increases conduction losses in the primary side of the converter and may consume the advantage gained in the switching losses. The converter can also be easily used for self-driven synchronous rectification. However, pursue for low switching losses for the primary side switch may deteriorate performance of the self-driven synchronous rectifiers, particularly at high loads. This paper presents a study of the applicability and advantage of the use of the resonant transition in Forward with active clamp and self-driven synchronous rectifiers. The emphasis is on the comparison of the achieved efficiency with different voltage levels over the primary switch prior to turning on. Measurement results show that, at low loads, a reduced voltage level improves the efficiency but, on the other hand, at high loads the advantage is not so significant, or it may be totally lost, mainly due to the increased losses of the self-driven synchronous rectifiers. The paper includes discussion on the effect of the magnetizing inductance on the efficiency of the converter and the optimal voltage level at which the primary switch should be turned on. Measurement results from a 3.4-V 30-A prototype converter are included. Index Terms--Forward converter, magnetizing inductance, self-driven synchronous rectifiers.

Details

Language :
English
ISSN :
08858993
Volume :
20
Issue :
2
Database :
Gale General OneFile
Journal :
IEEE Transactions on Power Electronics
Publication Type :
Academic Journal
Accession number :
edsgcl.131050589