Back to Search
Start Over
An adaptive semiactive control algorithm for magnetorheological suspension systems
- Source :
- Journal of Vibration and Acoustics. Oct, 2005, Vol. 127 Issue 5, p493, 10 p.
- Publication Year :
- 2005
-
Abstract
- In this paper, we will present a nonlinear-model-based adaptive semiactive control algorithm developed for magnetorheological (MR) suspension systems exposed to broadband nonstationary random vibration sources that are assumed to be unknown or not measurable. If there exist unknown and/or varying parameters of the dynamic system such as mass and stiffness, then the adaptive algorithm can include on-line system identification such as a recursive least-squares method. Based on a nonparametric MR damper model, the adaptive system stability is proved by converting the hysteresis inherent with MR dampers to a memoryless nonlinearity with sector conditions. The convergence of the adaptive system, however, is investigated through a linearization approach including further numerical illustration of specific cases. Finally the simulation results for a magnetorheological seat suspension system with the suggested adaptive control are presented. The results are compared with low-damping and high-damping cases, and such comparison further shows the effectiveness of the proposed nonlinear model-based adaptive control algorithm for damping tuning. [DOI: 10.1115/1.2013295]
Details
- Language :
- English
- ISSN :
- 10489002
- Volume :
- 127
- Issue :
- 5
- Database :
- Gale General OneFile
- Journal :
- Journal of Vibration and Acoustics
- Publication Type :
- Academic Journal
- Accession number :
- edsgcl.137791254