Back to Search Start Over

In vitro and in vivo measurement for biological applications using micromachined probe

Authors :
Kim, Jung-Mu
Oh, Donghoon
Yoon, Jeonghoon
Cho, Sungjoon
Kim, Namgon
Cho, Jeiwon
Kwon, Youngwoo
Cheon, Changyul
Kim, Yong-Kweon
Source :
IEEE Transactions on Microwave Theory and Techniques. Nov, 2005, Vol. 53 Issue 11, p3415, 7 p.
Publication Year :
2005

Abstract

We developed a small-sized micromachined probe for the measurement of biological properties using microelectromechanical systems (MEMS) technology. We also experimentally showed the suitability of the micromachined probe for biological applications through in vivo, as well as in vitro measurements of various types of tissue. We measured the permittivities of 0.9% saline and the muscle and fat of pork using the micromachined probe after liquid calibration. The measured permittivities of 0.9 % saline and pork agreed well with both the expected values of the Cole-Cole equation along with the measured values obtained through the use of a 1-mm-diameter open-ended coaxial probe. We also performed in vivo measurements of breast cancer tissue implanted in an athymic nude mouse to show the suitability of the small-sized micromachined probe for practical biological applications. Through the obtained data, the capability of the micromachined probe of distinguishing different tissue types from one another was shown. The actual aperture size of the micromachined probe is only 240 [micro]m x 70 [micro]m and, therefore, we can extract the biological information from very small biological tissues and drastically decrease the invasiveness of this method through the implementation of the small probe created through the use of MEMS technology. Index Terms--In vitro, in vivo, microelectromechanical systems (MEMS), micromachined probe, permittivity measurement.

Details

Language :
English
ISSN :
00189480
Volume :
53
Issue :
11
Database :
Gale General OneFile
Journal :
IEEE Transactions on Microwave Theory and Techniques
Publication Type :
Academic Journal
Accession number :
edsgcl.139106382