Back to Search Start Over

High-resolution structure of the catalytic region of MICAL (molecule interacting with CasL), a multidomain flavoenzyme-signaling molecule

Authors :
Siebold, Christian
Berrow, Nick
Walter, Thomas S.
Harlos, Karl
Owens, Ray J.
Stuart, David I.
Terman, Jonathan R.
Kolodkin, Alex L.
Pasterkamp, R. Jeroen
Jones, E. Yvonne
Source :
Proceedings of the National Academy of Sciences of the United States. Nov 15, 2005, Vol. 102 Issue 46, p16836, 6 p.
Publication Year :
2005

Abstract

Semaphorins are extracellular cell guidance cues that govern cytoskeletal dynamics during neuronal and vascular development. MICAL (molecule interacting with CasL) is a multidomain cytosolic protein with a putative flavoprotein monooxygenase (MO) region required for semaphorin-plexin repulsive axon guidance. Here, we report the 1.45-[Angstrom] resolution crystal structure of the FAD-containing MO domain of mouse MICAL-1 (residues 1-489). The topology most closely resembles that of the NADPH-dependent flavoenzyme p-hydroxybenzoate hydroxylase (PHBH). Comparison of structures before and after reaction with NADPH reveals that, as in PHBH, the flavin ring can switch between two discrete positions. In contrast with other MOs, this conformational switch is coupled with the opening of a channel to the active site, suggestive of a protein substrate. In support of this hypothesis, distinctive structural features highlight putative protein-binding sites in suitable proximity to the active site entrance. The unusual juxtaposition of this N-terminal MO (hydroxylase) activity with the characteristics of a multiprotein-binding scaffold exhibited by the C-terminal portion of the MICALs represents a unique combination of functionality to mediate signaling. axon guidance | hydroxylase | monooxygenase | protein structure | signal transduction

Details

Language :
English
ISSN :
00278424
Volume :
102
Issue :
46
Database :
Gale General OneFile
Journal :
Proceedings of the National Academy of Sciences of the United States
Publication Type :
Academic Journal
Accession number :
edsgcl.139555616