Back to Search Start Over

Noncausal Gauss Markov random fields: parameter structure and estimation

Authors :
Balram, Nikhil
Moura, Jose M.F.
Source :
IEEE Transactions on Information Theory. July, 1993, Vol. v39 Issue n4, p1333, 23 p.
Publication Year :
1993

Abstract

The parameter structure of noncausal homogeneous Gauss Markov random fields (GMRF) defined on finite lattices is studied. For first-order (nearest neighbor) and a special class of second-order fields, we provide a complete characterization of the parameter space and a fast implementation of the maximum likelihood (ML) estimator of the field parameters. For general higher order fields, tight bounds for the parameter space are presented and an efficient procedure for ML estimation is described. Experimental results illustrate the application of the approach presented and the viability of the present method in fitting noncausal models to 2-D data.

Details

ISSN :
00189448
Volume :
v39
Issue :
n4
Database :
Gale General OneFile
Journal :
IEEE Transactions on Information Theory
Publication Type :
Academic Journal
Accession number :
edsgcl.14649740