Back to Search Start Over

A humanized gnotobiotic mouse model of host--archaeal--bacterial mutualism

Authors :
Samuel, Buck S.
Gordon, Jeffrey I.
Source :
Proceedings of the National Academy of Sciences of the United States. June 27, 2006, Vol. 103 Issue 26, p10011, 6 p.
Publication Year :
2006

Abstract

Our colons harbor trillions of microbes including a prominent archaeon, Methanobrevibacter smithii. To examine the contributions of Archaea to digestive health, we colonized germ-free mice with Bacteroides thetaiotaomicron, an adaptive bacterial forager of the polysaccharides that we consume, with or without M. smithii or the sulfate-reducing bacterium Desulfovibrio piger. Whole-genome transcriptional profiling of B. thetaiotaomicron, combined with mass spectrometry, revealed that, unlike D. piger, M. smithii directs B. thetaiotaomicron to focus on fermentation of dietary fructans to acetate, whereas B. thetaiotaomicron-derived formate is used by M. smithii for methanogenesis. B. thetaiotaomicron-M. smithii cocolonization produces a significant increase in host adiposity compared with monoassociated, or B. thetaiotaomicron-D. piger biassociated, animals. These findings demonstrate a link between this archaeon, prioritized bacterial utilization of polysaccharides commonly encountered in our modern diets, and host energy balance. adiposity | energy homeostasis | gut microbial ecology | polysaccharide metabolism | Methanobrevibactersmithii

Details

Language :
English
ISSN :
00278424
Volume :
103
Issue :
26
Database :
Gale General OneFile
Journal :
Proceedings of the National Academy of Sciences of the United States
Publication Type :
Academic Journal
Accession number :
edsgcl.149023499