Back to Search
Start Over
Zero-phase filtering for lightning impulse evaluation: a K-factor filter for the revision of IEC60060-1 and -2
- Source :
- IEEE Transactions on Power Delivery. Jan, 2008, Vol. 23 Issue 1, p3, 10 p.
- Publication Year :
- 2008
-
Abstract
- The next revision of the international standard for high-voltage measurement techniques, IEC 60060-1, has been planned to include a new method for evaluating the parameters associated with lightning impulse voltages. This would be a significant improvement on the loosely defined existing method which is, in part, reliant on operator judgment and would ensure that a single approach is adopted worldwide to determine peak voltage, front, and tail times, realizing standardization in measured parameters across all laboratories. Central to the proposed method is the use of a K-factor to attenuate oscillations and overshoots that can occur with practical generation of impulse voltages for testing on high-voltage equipment. It is proposed that a digital filter that matches the K-factor gain characteristic be implemented and used for this purpose. To date, causal filter designs have been implemented and assessed. This paper is concerned with the potential application of a noncausal digital filter design to emulate the K-factor. The approach has several advantages; the resulting design is only second order, it can be designed without using optimization algorithms, it is a zero-phase design and it matches the K-factor almost perfectly. Parameter estimation using waveforms from the IEC 61083-2 test data generator and experimental impulse voltages has been undertaken and obtained results show that the zero-phase filter is the ideal digital representation of the proposed K-factor. The effect of evaluating parameters by the proposed method is compared to mean-curve fitting and the challenge of effective front-time evaluation is discussed. Index Terms--Digital filters, high-voltage techniques, IEC 60060-1, impulse testing, pulse measurements, zero-phase filter.
Details
- Language :
- English
- ISSN :
- 08858977
- Volume :
- 23
- Issue :
- 1
- Database :
- Gale General OneFile
- Journal :
- IEEE Transactions on Power Delivery
- Publication Type :
- Academic Journal
- Accession number :
- edsgcl.173375821