Back to Search Start Over

IK1 channel activity contributes to cisplatin sensitivity of human epidermoid cancer cells

Authors :
Lee, Elbert L.
Hasegawa, Yuichi
Shimizu, Takahiro
Okada, Yasunobu
Source :
The American Journal of Physiology. June, 2008, Vol. 294 Issue 6, pC1398, 9 p.
Publication Year :
2008

Abstract

Cisplatin, a platinum-based drug, is an important weapon against many types of cancer. It induces apoptosis by forming adducts with DNA, although many aspects of its mechanism of action remain to be clarified. Previously, we found a role for the volume-sensitive, outwardly rectifying [Cl.sup.-] channel in cisplatin-induced apoptosis. To investigate the possibility that cation channels also have a role in the cellular response to cisplatin, we examined the activity of cation channels in cisplatin-sensitive KB-3-1 (KB) epidermoid cancer cells by the whole cell patch-clamp method. A cation channel in KB cells, activated by hypotonic stress, was identified as the [Ca.sup.2+]-activated, intermediate-conductance [K.sup.+] (IK1) channel on the basis of its requirement for intracellular [Ca.sup.2+], its blockage by the blockers clotrimazole and triarylmethane-34, and its suppression by a dominant-negative construct. Activity of this channel was not observed in KCP-4 cells, a cisplatin-resistant cell line derived from KB cells, and its molecular expression, observed by semiquantitative RT-PCR and immunostaining, appeared much reduced. Cell volume measurements confirmed a physiological role for the IK1 channel as a component of the volume-regulatory machinery in KB cells. A possible role of the IK1 channel in cisplatin-induced apoptosis was investigated. It was found that clotrimazole and triarylmethane-34 inhibited a cisplatin-induced decrease in cell viability and increase in caspase-3/7 activity, whereas 1-ethyl-2-benzimidazolinone, an activator of the channel, had the opposite effect. Thus IK1 channel activity appears to mediate, at least in part, the response of KB cells to cisplatin treatment. potassium channel; volume regulation; anticancer drug; apoptosis; cisplatin resistance

Details

Language :
English
ISSN :
00029513
Volume :
294
Issue :
6
Database :
Gale General OneFile
Journal :
The American Journal of Physiology
Publication Type :
Academic Journal
Accession number :
edsgcl.180471014