Back to Search Start Over

List decoding of biorthogonal codes and the Hadamard transform with linear complexity

Authors :
Dumer, Ilya
Kabatiansky, Grigory
Tavernier, Cedric
Source :
IEEE Transactions on Information Theory. Oct, 2008, Vol. 54 Issue 10, p4488, 5 p.
Publication Year :
2008

Abstract

Let a biorthogonal Reed-Muller code RM (1, m) of length n = [2.sup.m] be used on a memoryless channel with an input alphabet [+ or -] 1 and a real-valued output R. Given any nonzero received vector y in the Euclidean space [R.sup.n] and some parameter [epsilon] [member of] (0, 1), our goal is to perform list decoding of the code RM (1, m) and retrieve all codewords located within the angle arccos [member of] from y. For an arbitrarily small [epsilon], we design an algorithm that outputs this list of codewords with the linear complexity order of n [[ln.sup.2] [epsilon]] bit operations. Without loss of generality, let vector y be also scaled to the Euclidean length [square root of n] of the transmitted vectors. Then an equivalent task is to retrieve all coefficients of the Hadamard transform of vector y whose absolute values exceed n[epsilon]. Thus, this decoding algorithm retrieves all n[epsilon]-significant coefficients of the Hadamard transform with the linear complexity n [[ln.sup.2] [epsilon]] instead of the complexity n [ln.sup.2] n of the full Hadamard transform. Index Terms--Biorthogonal codes, Hadamard transform, soft-decision list decoding.

Details

Language :
English
ISSN :
00189448
Volume :
54
Issue :
10
Database :
Gale General OneFile
Journal :
IEEE Transactions on Information Theory
Publication Type :
Academic Journal
Accession number :
edsgcl.186433641