Back to Search Start Over

Machine vision-based concrete surface quality assessment

Authors :
Zhu, Zhenhua
Brilakis, Ioannis
Source :
Journal of Construction Engineering and Management. Feb, 2010, Vol. 136 Issue 2, p210, 9 p.
Publication Year :
2010

Abstract

Manually inspecting concrete surface defects (e.g., cracks and air pockets) is not always reliable. Also, it is labor- intensive. In order to overcome these limitations, automated inspection using image processing techniques was proposed. However, the current work can only detect defects in an image without the ability of evaluating them. This paper presents a novel approach for automatically assessing the impact of two common surface defects (i.e., air pockets and discoloration). These two defects are first located using the developed detection methods. Their attributes, such as the number of air pockets and the area of discoloration regions, are then retrieved to calculate defects' visual impact ratios (VIRs). The appropriate threshold values for these VIRs are selected through a manual rating survey. This way, for a given concrete surface image, its quality in terms of air pockets and discoloration can be automatically measured by judging whether their VIRs are below the threshold values or not. The method presented in this paper was implemented in C+ + and a database of concrete surface images was tested to validate its performance. DOI: 10.1061/(ASCE)CO.1943-7862.0000126 CE Database subject headings: Defects; Identification; Assessment; Concrete; Imaging techniques; Information technology (IT). Author keywords: Defects; Identifications; Assessment; Concrete; Images; Imaging techniques; Information technology.

Details

Language :
English
ISSN :
07339364
Volume :
136
Issue :
2
Database :
Gale General OneFile
Journal :
Journal of Construction Engineering and Management
Publication Type :
Academic Journal
Accession number :
edsgcl.219141918