Back to Search Start Over

Modelling oxygen transport in soil with plant root and microbial oxygen consumption: depth of oxygen penetration

Authors :
Cook, F.J.
Knight, J.H.
Kelliher, F.M.
Source :
Soil Research. September 1, 2013, Vol. 51 Issue 6, p539, 15 p.
Publication Year :
2013

Abstract

A set of equations governing oxygen diffusion and consumption in soils has been developed to include microbial and plant-root sinks. The dependent variable is the transformed oxygen concentration, which is the difference between the gaseous concentration and a scaled value of the aqueous oxygen concentration at the root-soil interface. The results show how, as the air-filled porosity decreases, the reduced oxygen flux causes the depth of extinction to decrease. The results also show how the depth of extinction at a particular value of soil water content decreases with increasing temperature, due to increased microbial respiration. The critical value of water content at which the oxygen concentration goes to extinction at a finite depth was compared with alternative calculations with only a microbial sink. By ignoring the feedback of oxygen concentration on root uptake, the alternative calculations yielded substantially higher critical values of water content at all temperatures. Two soil oxygen diffusion coefficient functions from the literature were compared and shown to give significantly different critical values of water content for fine-textured soils, one more realistic than the other. A single relationship between the extinction depth and the ratio of the water content to the critical value was shown to apply for all temperatures and soil textures. The oxygen profiles were used along with a function relating redox potential to oxygen concentration to generate redox potential profiles. This application of the model could be useful in explaining soil biochemical processes in soils. For one such process, denitrification, the depth at which a critical oxygen concentration is reached was calculated as a function of the air-filled porosity and temperature of the soil. The implications of the critical value of soil water content in terms of water-filled pore space and matric potential are discussed in relation to the diffusion coefficient functions and recent literature. Additional keywords: air-filled pore space, denitrification, diffusion coefficient function, oxygen transport, redox potential, soil respiration.<br />Introduction The transport of oxygen into soil and its distribution within the profile are fundamental to the understanding of aeration, and biochemical and chemical reactions in soil. The oxygen status [...]

Details

Language :
English
ISSN :
1838675X
Volume :
51
Issue :
6
Database :
Gale General OneFile
Journal :
Soil Research
Publication Type :
Academic Journal
Accession number :
edsgcl.354145565
Full Text :
https://doi.org/10.1071/SR