Back to Search
Start Over
Temporal controls over inter-areal cortical projection neuron fate diversity
- Source :
- Nature. November 18, 2021, Vol. 599 Issue 7885, p453, 5 p.
- Publication Year :
- 2021
-
Abstract
- Author(s): Esther Klingler [sup.1] , Ugo Tomasello [sup.1] , Julien Prados [sup.2] , Justus M. Kebschull [sup.3] [sup.6] , Alessandro Contestabile [sup.1] , Gregorio L. Galiñanes [sup.1] , Sabine Fièvre [...]<br />Interconnectivity between neocortical areas is critical for sensory integration and sensorimotor transformations.sup.1-6. These functions are mediated by heterogeneous inter-areal cortical projection neurons (ICPN), which send axon branches across cortical areas as well as to subcortical targets.sup.7-9. Although ICPN are anatomically diverse.sup.10-14, they are molecularly homogeneous.sup.15, and how the diversity of their anatomical and functional features emerge during development remains largely unknown. Here we address this question by linking the connectome and transcriptome in developing single ICPN of the mouse neocortex using a combination of multiplexed analysis of projections by sequencing.sup.16,17 (MAPseq, to identify single-neuron axonal projections) and single-cell RNA sequencing (to identify corresponding gene expression). Focusing on neurons of the primary somatosensory cortex (S1), we reveal a protracted unfolding of the molecular and functional differentiation of motor cortex-projecting ([Formula omitted]) ICPN compared with secondary somatosensory cortex-projecting ([Formula omitted]) ICPN. We identify SOX11 as a temporally differentially expressed transcription factor in [Formula omitted] versus [Formula omitted] ICPN. Postnatal manipulation of SOX11 expression in S1 impaired sensorimotor connectivity and disrupted selective exploratory behaviours in mice. Together, our results reveal that within a single cortical area, different subtypes of ICPN have distinct postnatal paces of molecular differentiation, which are subsequently reflected in distinct circuit connectivities and functions. Dynamic differences in the expression levels of a largely generic set of genes, rather than fundamental differences in the identity of developmental genetic programs, may thus account for the emergence of intra-type diversity in cortical neurons. Combined analysis of the connectome and transcriptome in the mouse cortex indicates that dynamic differences in expression levels of largely generic sets of genes regulate differential targeting within neuronal subtypes.
Details
- Language :
- English
- ISSN :
- 00280836
- Volume :
- 599
- Issue :
- 7885
- Database :
- Gale General OneFile
- Journal :
- Nature
- Publication Type :
- Academic Journal
- Accession number :
- edsgcl.682928436
- Full Text :
- https://doi.org/10.1038/s41586-021-04048-3