Back to Search Start Over

DNA methylation dynamics of the human preimplantation embryo

Authors :
Smith, Zachary D.
Chan, Michelle M.
Humm, Kathryn C.
Karnik, Rahul
Mekhoubad, Shila
Regev, Aviv
Eggan, Kevin
Meissner, Alexander
Source :
Smith, Zachary D., Michelle M. Chan, Kathryn C. Humm, Rahul Karnik, Shila Mekhoubad, Aviv Regev, Kevin Eggan, and Alexander Meissner. 2014. “DNA methylation dynamics of the human preimplantation embryo.” Nature 511 (7511): 611-615. doi:10.1038/nature13581. http://dx.doi.org/10.1038/nature13581.
Publication Year :
2014

Abstract

In mammals, cytosine methylation is predominantly restricted to CpG dinucleotides and stably distributed across the genome, with local, cell type-specific regulation directed by DNA binding factors1-3. This comparatively static landscape dramatically contrasts the events of fertilization, where the paternal genome is globally reprogrammed. Paternal genome demethylation includes the majority of CpGs, though methylation is maintained at several notable features4-7. While these dynamics have been extensively characterized in the mouse, only limited observations are available in other mammals, and direct measurements are required to understand the extent to which early embryonic landscapes are conserved8-10. We present genome-scale DNA methylation maps of human preimplantation development and embryonic stem cell (ESC) derivation, confirming a transient state of global hypomethylation that includes most CpGs, while sites of persistent maintenance are primarily restricted to gene bodies. While most features share similar dynamics to mouse, maternally contributed methylation is divergently targeted to species-specific sets of CpG island (CGI) promoters that extend beyond known Imprint Control Regions (ICRs). Retrotransposon regulation is also highly diverse and transitions from maternally to embryonically expressed, species-specific elements. Together, our data confirm that paternal genome demethylation is a general attribute of early mammalian development that is characterized by distinct modes of epigenetic regulation.

Details

Language :
English
ISSN :
00280836
Database :
Digital Access to Scholarship at Harvard (DASH)
Journal :
Smith, Zachary D., Michelle M. Chan, Kathryn C. Humm, Rahul Karnik, Shila Mekhoubad, Aviv Regev, Kevin Eggan, and Alexander Meissner. 2014. “DNA methylation dynamics of the human preimplantation embryo.” Nature 511 (7511): 611-615. doi:10.1038/nature13581. http://dx.doi.org/10.1038/nature13581.
Publication Type :
Academic Journal
Accession number :
edshld.1.13890592
Document Type :
Journal Article
Full Text :
https://doi.org/10.1038/nature13581