Back to Search Start Over

Radiative forcing in the 21st century due to ozone changes in the troposphere and the lower stratosphere

Authors :
Gauss, M.
Myhr, G
Pitari, G
Prather, M.J.
Isaksen, I
Berntsen, T
Brasseur, G
Dentener, F
Derwent, R
Hauglustaine, D
Horowitz, L
Jacob, Daniel James
Johnson, M
Law, K
Mickley, Loretta J.
Müller, J
Plantevin, P
Pyle, J
Rogers, H
Stevenson, D
Sundet, J
van Weele, M
Wild, O
Source :
Gauss, M., G. Myhr, G. Pitari, M. J. Prather, I. S. A. Isaksen, T. K. Berntsen, G. P. Brasseur, F. J. Dentener, R. G. Derwent, D. A. Hauglustaine, L. W. Horowitz, D. J. Jacob, M. Johnson, K. S. Law, L. J. Mickley, J.-F. Müller, P.-H. Plantevin, J. A. Pyle, H. L. Rogers, D. S. Stevenson, J. K. Sundet, M. van Weele, and O. Wild. 2003. “Radiative Forcing in the 21st Century Due to Ozone Changes in the Troposphere and the Lower Stratosphere.” Journal of Geophysical Research 108 (D9): 4292. doi:10.1029/2002jd002624.
Publication Year :
2003
Publisher :
Wiley-Blackwell, 2003.

Abstract

Radiative forcing due to changes in ozone is expected for the 21st century. An assessment on changes in the tropospheric oxidative state through a model intercomparison (“OxComp”) was conducted for the IPCC Third Assessment Report (IPCC-TAR). OxComp estimated tropospheric changes in ozone and other oxidants during the 21st century based on the “SRES” A2p emission scenario. In this study we analyze the results of 11 chemical transport models (CTMs) that participated in OxComp and use them as input for detailed radiative forcing calculations. We also address future ozone recovery in the lower stratosphere and its impact on radiative forcing by applying two models that calculate both tropospheric and stratospheric changes. The results of OxComp suggest an increase in global-mean tropospheric ozone between 11.4 and 20.5 DU for the 21st century, representing the model uncertainty range for the A2p scenario. As the A2p scenario constitutes the worst case proposed in IPCC-TAR we consider these results as an upper estimate. The radiative transfer model yields a positive radiative forcing ranging from 0.40 to 0.78 W m−2 on a global and annual average. The lower stratosphere contributes an additional 7.5–9.3 DU to the calculated increase in the ozone column, increasing radiative forcing by 0.15–0.17 W m−2. The modeled radiative forcing depends on the height distribution and geographical pattern of predicted ozone changes and shows a distinct seasonal variation. Despite the large variations between the 11 participating models, the calculated range for normalized radiative forcing is within 25%, indicating the ability to scale radiative forcing to global-mean ozone column change.<br />Engineering and Applied Sciences

Details

Language :
English
ISSN :
01480227
Database :
Digital Access to Scholarship at Harvard (DASH)
Journal :
Gauss, M., G. Myhr, G. Pitari, M. J. Prather, I. S. A. Isaksen, T. K. Berntsen, G. P. Brasseur, F. J. Dentener, R. G. Derwent, D. A. Hauglustaine, L. W. Horowitz, D. J. Jacob, M. Johnson, K. S. Law, L. J. Mickley, J.-F. Müller, P.-H. Plantevin, J. A. Pyle, H. L. Rogers, D. S. Stevenson, J. K. Sundet, M. van Weele, and O. Wild. 2003. “Radiative Forcing in the 21st Century Due to Ozone Changes in the Troposphere and the Lower Stratosphere.” Journal of Geophysical Research 108 (D9): 4292. doi:10.1029/2002jd002624.
Publication Type :
Academic Journal
Accession number :
edshld.1.14118829
Document Type :
Journal Article
Full Text :
https://doi.org/10.1029/2002JD002624