Back to Search Start Over

Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics

Authors :
Cowell, Annie N.
Istvan, Eva S.
Lukens, Amanda K.
Gomez-Lorenzo, Maria G.
Vanaerschot, Manu
Sakata-Kato, Tomoyo
Flannery, Erika L.
Magistrado, Pamela
Owen, Edward
Abraham, Matthew
LaMonte, Gregory
Painter, Heather J.
Williams, Roy M.
Franco, Virginia
Linares, Maria
Arriaga, Ignacio
Bopp, Selina
Corey, Victoria C.
Gnädig, Nina F.
Coburn-Flynn, Olivia
Reimer, Christin
Gupta, Purva
Murithi, James M.
Moura, Pedro A.
Fuchs, Olivia
Sasaki, Erika
Kim, Sang W.
Teng, Christine H.
Wang, Lawrence T.
Akidil, Aslı
Adjalley, Sophie
Willis, Paul A.
Siegel, Dionicio
Tanaseichuk, Olga
Zhong, Yang
Zhou, Yingyao
Llinás, Manuel
Ottilie, Sabine
Gamo, Francisco-Javier
Lee, Marcus C. S.
Goldberg, Daniel E.
Fidock, David A.
Wirth, Dyann F.
Winzeler, Elizabeth A.
Source :
Cowell, A. N., E. S. Istvan, A. K. Lukens, M. G. Gomez-Lorenzo, M. Vanaerschot, T. Sakata-Kato, E. L. Flannery, et al. 2018. “Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics.” Science (New York, N.Y.) 359 (6372): 191-199. doi:10.1126/science.aan4472. http://dx.doi.org/10.1126/science.aan4472.
Publication Year :
2018

Abstract

Chemogenetic characterization through in vitro evolution combined with whole-genome analysis can identify antimalarial drug targets and drug-resistance genes. We performed a genome analysis of 262 Plasmodium falciparum parasites resistant to 37 diverse compounds. We found 159 gene amplifications and 148 nonsynonymous changes in 83 genes associated with drug-resistance acquisition, where gene amplifications contributed to one-third of resistance acquisition events. Beyond confirming previously identified multidrug-resistance mechanisms, we discovered hitherto unrecognized drug target–inhibitor pairs, including thymidylate synthase and a benzoquinazolinone, farnesyltransferase and a pyrimidinedione, and a dipeptidylpeptidase and an arylurea. This exploration of the P. falciparum resistome and druggable genome will likely guide drug discovery and structural biology efforts, while also advancing our understanding of resistance mechanisms available to the malaria parasite.

Details

Language :
English
Database :
Digital Access to Scholarship at Harvard (DASH)
Journal :
Cowell, A. N., E. S. Istvan, A. K. Lukens, M. G. Gomez-Lorenzo, M. Vanaerschot, T. Sakata-Kato, E. L. Flannery, et al. 2018. “Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics.” Science (New York, N.Y.) 359 (6372): 191-199. doi:10.1126/science.aan4472. http://dx.doi.org/10.1126/science.aan4472.
Publication Type :
Academic Journal
Accession number :
edshld.1.37068244
Document Type :
Journal Article
Full Text :
https://doi.org/10.1126/science.aan4472