Back to Search Start Over

Goddard High-Resolution Spectrograph Observations of Procyon and HR1099

Authors :
Wood, Brian E
Harper, Graham M
Linsky, Jeffrey L
Dempsey, Robert C
Source :
The Astrophysical Journal. (458)
Publication Year :
1996
Publisher :
United States: NASA Center for Aerospace Information (CASI), 1996.

Abstract

Goddard High Resolution Spectrograph (GHRS) observations have revealed the presence of broad wings in the transition-region lines of AU Mic and Capella. It has been proposed that these wings are signatures of microflares in the transition regions of these stars and that the solar analog for this phenomenon might be the 'transition region explosive events' discussed by Dere, Bartoe, & Brueckner. We have analyzed GHRS observations of Procyon (F5 IV-V) and HR 1099 (K1 IV + G5 IV) to search for broad wings in the UV emission lines of these stars. We find that the transition-region lines of HR 1099, which are emitted almost entirely by the K1 star, do indeed have broad wings that are even more prominent than those of AU Mic and Capella. This is consistent with the association of the broad wings with microflaring since HR 1099 is a very active binary system. In contrast, the transition-region lines of Procyon, a relatively inactive star, do not show evidence for broad wings, with the possible exception of N v lambda1239. However, Procyon's lines do appear to have excess emission in their blue wings. Linsky et al. found no evidence for broad wings in Capella's chromospheric lines, but we find that the Mg II resonance lines of HR 1099 do have broad wings. The striking resemblance between HR 1099's Mg II and C iv lines suggests that the Mg II line profiles may be regulated by turbulent processes similar to those that control the transition-region line profiles. If this is the case, microflaring may be occurring in the K1 star's chromosphere as well as in its transition region. However, radiative transfer calculations suggest that the broad wings of the Mg II lines can also result from normal chromospheric opacity effects rather than pure turbulence. The prominence of broad wings in the transition region and perhaps even chromospheric lines of active stars suggests that microflaring is very prevalent in the outer atmospheres of active stars.

Subjects

Subjects :
Astronomy

Details

Language :
English
Issue :
458
Database :
NASA Technical Reports
Journal :
The Astrophysical Journal
Notes :
NASA Order S-56460-D, , NAS5-26555
Publication Type :
Report
Accession number :
edsnas.19970022295
Document Type :
Report