Back to Search
Start Over
Magic-T Junction using Microstrip/Slotline Transitions
- Source :
- NASA Tech Briefs, September 2008.
- Publication Year :
- 2008
- Publisher :
- United States: NASA Center for Aerospace Information (CASI), 2008.
-
Abstract
- An improved broadband planar magic-T junction that incorporates microstrip/slotline transitions has been developed. In comparison with a prior broadband magic-T junction incorporating microstrip/slotline transitions, this junction offers superior broadband performance. In addition, because this junction is geometrically simpler and its performance is less affected by fabrication tolerances, the benefits of the improved design can be realized at lower fabrication cost. There are potential uses for junctions like this one in commercial microwave communication receivers, radar and polarimeter systems, and industrial microwave instrumentation. A magic-T junction is a four-port waveguide junction consisting of a combination of an H-type and an E-type junction. An E-type junction is so named because it includes a junction arm that extends from a main waveguide in the same direction as that of the electric (E) field in the waveguide. An H-type junction is so named because it includes a junction arm parallel to the magnetic (H) field in a main waveguide. A magic-T junction includes two input ports (here labeled 1 and 2, respectively) and two output ports (here labeled E and H, respectively). In an ideal case, (1) a magic-T junction is lossless, (2) the input signals add (that is, they combine in phase with each other) at port H, and (3) the input signals subtract (that is, they combine in opposite phase) at port E. The prior junction over which the present junction is an improvement affords in-phase-combining characterized by a broadband frequency response, and features a small slotline area to minimize in-band loss. However, with respect to isolation between ports 1 and 2 and return loss at port E, it exhibits narrowband frequency responses. In addition, its performance is sensitive to misalignment of microstrip and slotline components: this sensitivity is attributable to a limited number of quarter-wavelength (lambda/4) transmission-line sections for matching impedances among all four ports, and to strong parasitic couplings at the microstrip/slotline T junction, where four microstrip lines and a slotline are combined. The present improved broadband magic-T junction (see figure) includes a microstrip ring structure and two microstrip- to-slotline transitions. One of the microstrip/slotline transitions is a small T junction between the ring and a slotline; the other microstrip/slotline transition effects coupling between the slotline and port E. The smallness of the T junction and the use of minimum-size slotline terminations help to minimize radiation loss. An impedance-transformation network that includes multiple quarter-wavelength sections is used to increase the operating bandwidth and minimize the parasitic coupling around the microstrip/slotline T junction. As a result, the improved junction has greater bandwidth and lower phase imbalance at the sum and difference ports than did the prior junction.
- Subjects :
- Man/System Technology And Life Support
Subjects
Details
- Language :
- English
- Database :
- NASA Technical Reports
- Journal :
- NASA Tech Briefs, September 2008
- Publication Type :
- Report
- Accession number :
- edsnas.20080048145
- Document Type :
- Report