Back to Search Start Over

Apparatus Measures Thermal Conductance Through a Thin Sample from Cryogenic to Room Temperature

Authors :
Tuttle, James G
Source :
NASA Tech Briefs, November 2009.
Publication Year :
2009
Publisher :
United States: NASA Center for Aerospace Information (CASI), 2009.

Abstract

An apparatus allows the measurement of the thermal conductance across a thin sample clamped between metal plates, including thermal boundary resistances. It allows in-situ variation of the clamping force from zero to 30 lb (133.4 N), and variation of the sample temperature between 40 and 300 K. It has a special design feature that minimizes the effect of thermal radiation on this measurement. The apparatus includes a heater plate sandwiched between two identical thin samples. On the side of each sample opposite the heater plate is a cold plate. In order to take data, the heater plate is controlled at a slightly higher temperature than the two cold plates, which are controlled at a single lower temperature. The steady-state controlling power supplied to the hot plate, the area and thickness of samples, and the temperature drop across the samples are then used in a simple calculation of the thermal conductance. The conductance measurements can be taken at arbitrary temperatures down to about 40 K, as the entire setup is cooled by a mechanical cryocooler. The specific geometry combined with the pneumatic clamping force control system and the steady-state temperature control approach make this a unique apparatus.

Details

Language :
English
Database :
NASA Technical Reports
Journal :
NASA Tech Briefs, November 2009
Publication Type :
Report
Accession number :
edsnas.20090040049
Document Type :
Report