Back to Search Start Over

Isokinetic TWC Evaporator Probe: Development of the IKP2 and Performance Testing for the HAIC-HIWC Darwin 2014 and Cayenne 2015 Field Campaigns

Authors :
Strapp, J. Walter
Lilie, Lyle E
Ratvasky, Thomas P
Davison, Craig
Dumont, Chris
Publication Year :
2016
Publisher :
United States: NASA Center for Aerospace Information (CASI), 2016.

Abstract

A new Isokinetic Total Water Content Evaporator (IKP2) was downsized from a prototype instrument, specifically to make airborne measurements of hydrometeor total water content (TWC) in deep tropical convective clouds to assess the new ice crystal Appendix D icing envelope. The probe underwent numerous laboratory and wind tunnel investigations to ensure reliable operation under the difficult high altitude/speed/TWC conditions under which other TWC instruments have been known to either fail, or have unknown performance characteristics. The article tracks the testing and modifications of the IKP2 probe to ensure its readiness for three flight campaigns in 2014 and 2015. Comparisons are made between the IKP2 and the NASA Icing Research Tunnel reference values in liquid conditions, and to an exploratory technique estimating ice water content from a bulk ice capture cylinder method in glaciated conditions. These comparisons suggest that the initial target of 20% accuracy in TWC has been achieved and likely exceeded for tested TWC values in excess of about 0.5/cu gm. Uncertainties in the ice water content reference method have been identified. Complications are introduced in the necessary subtraction of an independently measured background water vapor concentration, errors of which are small at the colder flight temperatures, but increase rapidly with increasing temperature, and ultimately limit the practical use of the instrument in a tropical convective atmosphere to conditions colder than about 0 C. A companion article in this conference traces the accuracy of the components of the IKP2 to derive estimated system accuracy.

Details

Language :
English
Database :
NASA Technical Reports
Notes :
WBS 147016.03.03.02.14.01
Publication Type :
Report
Accession number :
edsnas.20170000243
Document Type :
Report