Back to Search Start Over

Symmetric Equations on the Surface of a Sphere as Used by Model GISS:IB

Authors :
Russell, Gary L
Rind, David H
Jonas, Jeffrey
Source :
Geoscientific Model Development. 11(11)
Publication Year :
2018
Publisher :
United States: NASA Center for Aerospace Information (CASI), 2018.

Abstract

Standard vector calculus formulas of Cartesian three space are projected onto the surface of a sphere. This produces symmetric equations with three nonindependent horizontal velocity components. Each orthogonal axis has a velocity component that rotates around its axis (eastward velocity rotates around the north–south axis) and a specific angular momentum component that is the product of the velocity component multiplied by the cosine of axis’ latitude. Angular momentum components align with the fixed axes and simplify several formulas, whereas the rotating velocity components are not orthogonal and vary with location. Three symmetric coordinates allow vector resolution and calculus operations continuously over the whole spherical surface, which is not possible with only two coordinates. The symmetric equations are applied to one-layer shallow water models on cubed-sphere and icosahedral grids, the latter being computationally simple and applicable to an ocean domain. Model results are presented for three different initial conditions and five different resolutions.

Subjects

Subjects :
Numerical Analysis

Details

Language :
English
ISSN :
19919603 and 1991959X
Volume :
11
Issue :
11
Database :
NASA Technical Reports
Journal :
Geoscientific Model Development
Notes :
80NSSC17M0057, , WBS 509496.02.08.04.24
Publication Type :
Report
Accession number :
edsnas.20190000312
Document Type :
Report
Full Text :
https://doi.org/10.5194/gmd-11-4637-2018