Back to Search Start Over

A Pulsar-Based Time-Scale from the International Pulsar Timing Array

Authors :
G. Hobbs
L. Guo
R. N. Caballero
W. Coles
K. J. Lee
R. N. Manchester
D. J. Reardon
D. Matsakis
M. L. Tong
Z Arzoumanian
M Bailes
C. G. Bassa
N. D. R. Bhat
A. Brazier
S. Burke-Spolaor
D. J. Champion
S. Chatterjee
I. Cognard
S. Dai
G. Desvignes
T Dolch
R. D. Ferdman
E. Graikou
L Guillemot
G H Janssen
M. J. Keith
M Kerr
M Kramer
M T Lam
K Liu
A Lyne
T J W Lazio
R Lynch
J W McKee
M A McLaughlin
C M F Mingarelli
D J Nice
S Oslowski
T T Pennucci
B B P Perera
D Perrodin
A Possenti
C J Russell
S Sanidas
A Sesana
G Shaifullah
R M Shannon
J Simon
R Spiewak
I H Stairs
B W Stappers
J K Swiggum
S R Taylor
G Theureau
L Toomey
R van Haasteren
J B Wang
Y Wang
X J Zhu
Source :
Monthly Notices of the Royal Astronomical Society. 491(4)
Publication Year :
2019
Publisher :
United States: NASA Center for Aerospace Information (CASI), 2019.

Abstract

We have constructed a new time-scale, TT(IPTA16), based on observations of radio pulsars presented in the first data release from the International Pulsar Timing Array (IPTA). We used two analysis techniques with independent estimates of the noise models for the pulsar observations and different algorithms for obtaining the pulsar time-scale. The two analyses agree within the estimated uncertainties and both agree with TT(BIPM17), a post-corrected time-scale produced by the Bureau International des Poids et Mesures (BIPM). We show that both methods could detect significant errors in TT(BIPM17) if they were present. We estimate the stability of the atomic clocks from which TT(BIPM17) is derived using observations of four rubidium fountain clocks at the US Naval Observatory. Comparing the power spectrum of TT(IPTA16) with that of these fountain clocks suggests that pulsar-based time-scales are unlikely to contribute to the stability of the best time-scales over the next decade, but they will remain a valuable independent check on atomic time-scales. We also find that the stability of the pulsar-based time-scale is likely to be limited by our knowledge of solar-system dynamics, and that errors in TT(BIPM17) will not be a limiting factor for the primary goal of the IPTA, which is to search for the signatures of nano-Hertz gravitational waves.

Subjects

Subjects :
Astronomy

Details

Language :
English
ISSN :
13652966 and 00358711
Volume :
491
Issue :
4
Database :
NASA Technical Reports
Journal :
Monthly Notices of the Royal Astronomical Society
Notes :
273493
Publication Type :
Report
Accession number :
edsnas.20210010290
Document Type :
Report
Full Text :
https://doi.org/10.1093/mnras/stz3071