Back to Search Start Over

Global Airborne Sampling Reveals a Previously Unobserved Dimethyl Sulfide Oxidation Mechanism in the Marine Atmosphere

Authors :
Patrick R. Veres
J. Andrew Neuman
Timothy H. Bertram
Emmanuel Assaf
Glenn M. Wolfe
Christina J. Williamson
Bernadett Weinzierl
Simone Tilmes
Chelsea Thompson
Alexander B. Thames
Jason C. Schroder
Alfonso Saiz-Lopez
Andrew W. Rollins
James M. Roberts
Derek Price
Jeff Peischl
Benjamin A. Nault
Kristian H. Møller
David O. Miller
Simone Meinardi
Qinyi Li
Jean-François Lamarque
Agnieszka Kupc
Henrik G. Kjaergaard
Douglas Kinnison
Jose L. Jimenez
Christopher M. Jernigan
Rebecca S. Hornbrook
Alan Hills
Maximilian Dollner
Douglas A. Day
Carlos A. Cuevas
Pedro Campuzano-Jost
James Burkholder
T. Paul Bui
William H. Brune
Steven S. Brown
Charles A. Brock
Ilann Bourgeois
Donald R. Blake
Eric C. Apel
Thomas B. Ryerson
Source :
Proceedings of the National Academy of Sciences (PNAS). 117(9)
Publication Year :
2020
Publisher :
United States: NASA Center for Aerospace Information (CASI), 2020.

Abstract

Dimethyl sulfide (DMS), emitted from the oceans, is the most abundant biological source of sulfur to the marine atmosphere. Atmospheric DMS is oxidized to condensable products that form secondary aerosols that affect Earth’s radiative balance by scattering solar radiation and serving as cloud condensation nuclei. We report the atmospheric discovery of a previously unquantified DMS oxidation product, hydroperoxymethyl thioformate (HPMTF, HOOCH2SCHO), identified through global-scale airborne observations that demonstrate it to be a major reservoir of marine sulfur. Observationally constrained model results show that more than 30% of oceanic DMS emitted to the atmosphere forms HPMTF. Coincident particle measurements suggest a strong link between HPMTF concentration and new particle formation and growth. Analyses of these observations show that HPMTF chemistry must be included in atmospheric models to improve representation of key linkages between the biogeochemistry of the ocean, marine aerosol formation and growth, and their combined effects on climate.

Details

Language :
English
ISSN :
10916490 and 00278424
Volume :
117
Issue :
9
Database :
NASA Technical Reports
Journal :
Proceedings of the National Academy of Sciences (PNAS)
Notes :
281945.02.42.01.90, , J-090011, , NNH15AB12l, , NHX15AH33A, , 80NSSC19K0124, , ERC-2016-COG 726349 CLIMAHAL, , ERC 640458 (A-LIFE)
Publication Type :
Report
Accession number :
edsnas.20210014502
Document Type :
Report
Full Text :
https://doi.org/10.1073/pnas.1919344117