Back to Search Start Over

Poly-l-lysine-coated magnetic nanoparticles as intracellular actuators for neural guidance

Authors :
Riggio,Cristina
Calatayud,Maria Pilar
Hoskins,Clare
Pinkernelle,Josephine
Sanz,Beatriz
Enrique Torres,Teobaldo
Ibarra,Manuel Ricardo
Wang,Lijun
Keilhoff,Gerburg
Goya,Gerardo Fabian
Raffa,Vittoria
Cuschieri,Alfred
Riggio,Cristina
Calatayud,Maria Pilar
Hoskins,Clare
Pinkernelle,Josephine
Sanz,Beatriz
Enrique Torres,Teobaldo
Ibarra,Manuel Ricardo
Wang,Lijun
Keilhoff,Gerburg
Goya,Gerardo Fabian
Raffa,Vittoria
Cuschieri,Alfred
Publication Year :
2012

Abstract

Cristina Riggio,1,* Maria Pilar Calatayud,2,* Clare Hoskins,3 Josephine Pinkernelle,4 Beatriz Sanz,2 Teobaldo Enrique Torres,2,5 Manuel Ricardo Ibarra,2,5 Lijun Wang,3 Gerburg Keilhoff,4 Gerardo Fabian Goya,2,5 Vittoria Raffa,1,6 Alfred Cuschieri1,3 1Institute of Life Science, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà, Pisa, Italy; 2Instituto de Nanociencia de Aragón, Universidad de Zaragoza. Mariano Esquillor, Zaragoza, Spain; 3IMSaT, Institute for Medical Science and Technology, University of Dundee, Dundee, Scotland; 4Otto-von-Guericke University, Institute of Biochemistry and Cell Biology, Magdeburg, Germany; 5Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza. Cerbuna 12, Zaragoza, Spain; 6Department of Biology, Università di Pisa, Pisa, Italy*These authors contributed equally to this workPurpose: It has been proposed in the literature that Fe3O4 magnetic nanoparticles (MNPs) could be exploited to enhance or accelerate nerve regeneration and to provide guidance for regenerating axons. MNPs could create mechanical tension that stimulates the growth and elongation of axons. Particles suitable for this purpose should possess (1) high saturation magnetization, (2) a negligible cytotoxic profile, and (3) a high capacity to magnetize mammalian cells. Unfortunately, the materials currently available on the market do not satisfy these criteria; therefore, this work attempts to overcome these deficiencies.Methods: Magnetite particles were synthesized by an oxidative hydrolysis method and characterized based on their external morphology and size distribution (high-resolution transmission electron microscopy [HR-TEM]) as well as their colloidal (Z potential) and magnetic properties (Superconducting QUantum Interference Devices [SQUID]). Cell viability was assessed via Trypan blue dye exclusion assay, cell doubling time, and MTT cell proliferation assay and reac

Details

Database :
OAIster
Notes :
text/html, English
Publication Type :
Electronic Resource
Accession number :
edsoai.ocn805760245
Document Type :
Electronic Resource