Back to Search Start Over

Combinatorial View of Digital Convexity

Authors :
Laboratoire de combinatoire et d'informatique mathématique [Montréal] (LaCIM) ; UQAM - Université du Québec à Montréal
Laboratoire de Mathématiques (LAMA) ; CNRS - Université de Savoie
Brlek, Srecko
Lachaud, Jacques-Olivier
Provençal, Xavier
Laboratoire de combinatoire et d'informatique mathématique [Montréal] (LaCIM) ; UQAM - Université du Québec à Montréal
Laboratoire de Mathématiques (LAMA) ; CNRS - Université de Savoie
Brlek, Srecko
Lachaud, Jacques-Olivier
Provençal, Xavier
Source :
Discrete Geometry for Computer Imagery; Discrete Geometry for Computer Imagery, Apr 2008, Lyon, France. pp.57-68, <10.1007/978-3-540-79126-3_7>

Abstract

International audience&lt;br /&gt;The notion of convexity translates non-trivially from Euclidean geometry to discrete geometry, and detecting if a discrete region of the plane is convex requires analysis. In this paper we study digital convexity from the combinatorics on words point of view, and provide a fast optimal algorithm checking digital convexity of polyominoes coded by the contour word. The result is based on the Lyndon factorization of the contour word, and the recognition of Christoffel factors that are approximations of digital lines.

Details

Database :
OAIster
Journal :
Discrete Geometry for Computer Imagery; Discrete Geometry for Computer Imagery, Apr 2008, Lyon, France. pp.57-68, <10.1007/978-3-540-79126-3_7>
Notes :
Lyon, France, Discrete Geometry for Computer Imagery, English
Publication Type :
Electronic Resource
Accession number :
edsoai.ocn893173888
Document Type :
Electronic Resource