Back to Search Start Over

Conductive composite fibres from reduced graphene oxide and polypyrrole nanoparticles

Authors :
Schirmer, Katharina
Esrafilzadeh, Dorna
Thompson, Brianna C
Quigley, Anita F
Kapsa, Robert M. I
Wallace, Gordon G
Schirmer, Katharina
Esrafilzadeh, Dorna
Thompson, Brianna C
Quigley, Anita F
Kapsa, Robert M. I
Wallace, Gordon G
Source :
Australian Institute for Innovative Materials - Papers
Publication Year :
2016

Abstract

Continuous composite fibres composed of polypyrrole (PPy) nanoparticles and reduced graphene oxide (rGO) at different mass ratios were fabricated using a single step wet-spinning approach. The electrical conductivity of the composite fibres increased significantly with the addition of rGO. The mechanical properties of the composite fibres also improved by the addition of rGO sheets compared to fibres containing only PPy. The ultimate tensile strength of the fibres increased with the proportion of rGO mass present. The elongation at break was greatest for the composite fibre containing equal mass ratios of PPy nanoparticles and rGO sheets. L929 fibroblasts seeded onto fibres showed no reduction in cell viability. To further assess toxicity, cells were exposed to media that had been used to extract any aqueous-soluble leachates from developed fibre. Overall, these composite fibres show promising mechanical and electrical properties while not significantly impeding cell growth, opening up a wide range of potential applications including nerve and muscle regeneration studies.

Details

Database :
OAIster
Journal :
Australian Institute for Innovative Materials - Papers
Notes :
application/pdf
Publication Type :
Electronic Resource
Accession number :
edsoai.ocn964025878
Document Type :
Electronic Resource