Back to Search
Start Over
Développement d’outils neuroinformatiques spécialisés pour améliorer l’analyse individuelle en médecine personnalisée
- Publication Year :
- 2017
-
Abstract
- L’imagerie par résonance magnétique de diffusion (IRMd) et de l’IRM fonctionnelle (IRMf) permettent d’explorer la connectivité cérébrale de façon in vivo. Avec l’IRMd, l’architecture du cerveau est inférée en observant la diffusion des molécules d’eau le long des faisceaux de matière blanche. La reconstitution virtuelle de ces fibres est appelée tractographie et représente encore un défi dans ce domaine. Avec l’IRMf, la connectivité fonctionnelle entre deux régions cérébrales est obtenue en examinant la corrélation spatiotemporelle des basses fréquences présentes dans le signal. Effectuer ces analyses sur l’entièreté des voxels du cerveau est très coûteux en termes de temps de calcul et nécessite des connaissances anatomiques précises à chaque individu. Bien qu’il y ait eu d’énormes progrès dans la sophistication des techniques d’imagerie pour traiter les maladies cérébrales, l’infrastructure informatique pour soutenir celles-ci est encore au niveau de l’Âge de pierre, entravant ainsi à leur déploiement en salle d’opération. Il est donc impératif de développer de nouveaux outils informatiques pouvant gérer la complexité de ces données dans un temps efficace. Cette thèse vise à réorienter le paradigme standard d’imagerie cérébrale qui généralise l’information entre individus vers une approche individualisée. Pour ce faire, nous avons 1) quantifié la variabilité présente dans les données d’IRM. Puis, nous avons 2) développé des outils neuro-informatiques permettant d’explorer la connectivité cérébrale au niveau individuel. Ces outils ont permis entre autres 3) d’améliorer la reconstruction virtuelle des radiations optiques, procurant ainsi une information plus complète aux neurochirurgiens. À terme, les méthodes proposées dans ce mémoire fourniront de l’aide aux chirurgiens afin d’améliorer le pronostic d’un patient.<br />Combining diffusion Magnetic Resonance Imaging (dMRI) and functional MRI (fMRI) permits a unique way of exploring brain connectivity in vivo. With dMRI, information about the structural architecture of the brain can be obtained by probing the diffusion of water molecules in and around the white matter (WM) fiber pathways. The process of virtually reconstructing these pathways is called tractography and still represents a difficult challenge in the field. With fMRI, functional connectivity is derived by examining the spatio-temporal correlations in the low frequency bracket of the blood-oxygen-level dependent (BOLD) signal. However, this process can be computationally expensive and requires anatomical knowledge. This thesis aims at shifting the standard brain imaging paradigm of generalizing information across individuals towards a subject-specific approach. Indeed, valuable information is discarded when assuming constant parameters across subjects. From a neurosurgical perspective, capturing the idiosyncrasies of individuals is paramount and requires a highlyspecialized set of mathematical tools. There have been huge advances in the sophistication of brain imaging techniques to treat brain diseases, but computational infrastructure to support the guidance of such treatment has lagged behind, hindering accessibility to their robust deployment. It is therefore imperative to develop a set of new mathematical and computational tools that can handle the complexity of these data in a time efficient manner. Here, applied cutting edge computational methods to improve scientific visualization of brain imaging data in a subject-specific fashion. Ultimately, the methods proposed here will allow surgeons to make a far more informed decision on patient outcome.
Details
- Database :
- OAIster
- Notes :
- French, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.ocn988567293
- Document Type :
- Electronic Resource