Back to Search
Start Over
Iron supplementation promotes gut microbiota metabolic activity but not colitis markers in human gut microbiota-associated rats
-
Abstract
- The global prevalence of Fe deficiency is high and a common corrective strategy is oral Fe supplementation, which may affect the commensal gut microbiota and gastrointestinal health. The aim of the present study was to investigate the impact of different dietary Fe concentrations on the gut microbiota and gut health of rats inoculated with human faecal microbiota. Rats (8 weeks old, n 40) were divided into five (n 8 each) groups and fed diets differing only in Fe concentration during an Fe-depletion period (12 weeks) and an Fe-repletion period (4 weeks) as follows: (1) Fe-sufficient diet throughout the study period; (2) Fe-sufficient diet followed by 70mg Fe/kg diet; (3) Fe-depleted diet throughout the study period; (4) Fe-depleted diet followed by 35mg Fe/kg diet; (5) Fe-depleted diet followed by 70mg Fe/kg diet. Faecal and caecal samples were analysed for gut microbiota composition (quantitative PCR and pyrosequencing) and bacterial metabolites (HPLC), and intestinal tissue samples were investigated histologically. Fe depletion did not significantly alter dominant populations of the gut microbiota and did not induce Fe-deficiency anaemia in the studied rats. Provision of the 35mg Fe/kg diet after feeding an Fe-deficient diet significantly increased the abundance of dominant bacterial groups such as Bacteroides spp. and Clostridium cluster IV members compared with that of an Fe-deficient diet. Fe supplementation increased gut microbial butyrate concentration 6-fold compared with Fe depletion and did not affect histological colitis scores. The present results suggest that Fe supplementation enhances the concentration of beneficial gut microbiota metabolites and thus may contribute to gut health
Details
- Database :
- OAIster
- Notes :
- English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.ocn999824783
- Document Type :
- Electronic Resource