Back to Search Start Over

Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease

Authors :
Motwani, M. (Manish)
Dey, D. (Damini)
Berman, D.S. (Daniel)
Germano, G. (Guido)
Achenbach, S. (Stephan)
Al-Mallah, M. (Mouaz)
Andreini, D. (Daniele)
Budoff, M.J. (Matthew)
Cademartiri, F. (Filippo)
Callister, T.Q. (Tracy)
Chang, H.-J. (Hyuk-Jae)
Chinnaiyan, K. (Kavitha)
Chow, B.J.W. (Benjamin)
Cury, R.C. (Ricardo)
Delago, A. (Augustin)
Gomez, M. (Millie)
Gransar, H. (Heidi)
Hadamitzky, M. (Martin)
Hausleiter, J. (Jörg)
Hindoyan, N. (Niree)
Feuchtner, G.M. (Gudrun)
Kaufmann, P.A. (Philipp)
Kim, Y.-J. (Yong-Jin)
Leipsic, J. (Jonathon)
Lin, F.Y. (Fay)
Maffei, E. (Erica)
Marques, H. (Hugo)
Pontone, G. (Gianluca)
Raff, G.L. (Gilbert)
Rubinshtein, R. (Ronen)
Shaw, L.J. (Leslee)
Stehli, J. (Julia)
Villines, T.C. (Todd)
Dunning, A.M. (Alison)
Min, J.K. (James)
Slomka, P.J. (Piotr J.)
Motwani, M. (Manish)
Dey, D. (Damini)
Berman, D.S. (Daniel)
Germano, G. (Guido)
Achenbach, S. (Stephan)
Al-Mallah, M. (Mouaz)
Andreini, D. (Daniele)
Budoff, M.J. (Matthew)
Cademartiri, F. (Filippo)
Callister, T.Q. (Tracy)
Chang, H.-J. (Hyuk-Jae)
Chinnaiyan, K. (Kavitha)
Chow, B.J.W. (Benjamin)
Cury, R.C. (Ricardo)
Delago, A. (Augustin)
Gomez, M. (Millie)
Gransar, H. (Heidi)
Hadamitzky, M. (Martin)
Hausleiter, J. (Jörg)
Hindoyan, N. (Niree)
Feuchtner, G.M. (Gudrun)
Kaufmann, P.A. (Philipp)
Kim, Y.-J. (Yong-Jin)
Leipsic, J. (Jonathon)
Lin, F.Y. (Fay)
Maffei, E. (Erica)
Marques, H. (Hugo)
Pontone, G. (Gianluca)
Raff, G.L. (Gilbert)
Rubinshtein, R. (Ronen)
Shaw, L.J. (Leslee)
Stehli, J. (Julia)
Villines, T.C. (Todd)
Dunning, A.M. (Alison)
Min, J.K. (James)
Slomka, P.J. (Piotr J.)
Publication Year :
2017

Abstract

__Aims__ Traditional prognostic risk assessment in patients undergoing non-invasive imaging is based upon a limited selection of clinical and imaging findings. Machine learning (ML) can consider a greater number and complexity of variables. Therefore, we investigated the feasibility and accuracy of ML to predict 5-year all-cause mortality (ACM) in patients undergoing coronary computed tomographic angiography (CCTA), and compared the performance to existing clinical or CCTA metrics. __Methods and results__ The analysis included 10 030 patients with suspected coronary artery disease and 5-year follow-up from the COronary CT Angiography EvaluatioN For Clinical Outcomes: An InteRnational Multicenter registry. All patients underwent CCTA as their standard of care. Twenty-five clinical and 44 CCTA parameters were evaluated, including segment stenosis score (SSS), segment involvement score (SIS), modified Duke index (DI), number of segments with non-calcified, mixed or calcified plaques, age, sex, gender, standard cardiovascular risk factors, and Framingham risk score (FRS). Machine learning involved automated feature selection by information gain ranking, model building with a boosted ensemble algorithm, and 10-fold stratified cross-validation. Seven hundred and forty-five patients died during 5-year follow-up. Machine learning exhibited a higher area-under-curve compared with the FRS or CCTA severity scores alone (SSS, SIS, DI) for predicting all-cause mortality (ML: 0.79 vs. FRS: 0.61, SSS: 0.64, SIS: 0.64, DI: 0.62; P , 0.001). __Conclusions__ Machine learning combining clinical and CCTA data was found to predict 5-year ACM significantly better than existing clinical or CCTA metrics alone.

Details

Database :
OAIster
Notes :
European Heart Journal vol. 38 no. 7, pp. 500-507, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1042809314
Document Type :
Electronic Resource
Full Text :
https://doi.org/10.1093.eurheartj.ehw188