Back to Search
Start Over
Thermalization in Periodically-Driven Interacting Quantum Systems
- Publication Year :
- 2018
-
Abstract
- Periodically-driven (Floquet) quantum systems are ubiquitous in science and technology. For example, when a laser illuminates a material or an AC voltage is applied to a device, the system is well-described by a time-periodic Hamiltonian. In recent years, periodic driving has been proposed, not just as a tool to excite and probe devices, but actually as a mechanism of engineering new phases of matter, some of which have no equilibrium analog. However, with this promise comes a serious problem. Intuitively, if energy is injected into and distributed throughout a system, it is no surprise that it tends to heat up indefinitely to infinite temperature. In this thesis, we study the mechanisms of heating, i.e. the process of thermalization, in Floquet systems and propose methods to control them. Specifically, for non-interacting Floquet systems that are coupled to external bosonic and fermionic baths (e.g. laser-driven electrons in a semiconductor that interact with phonons and an external lead), we classify the relevant scattering processes that contribute to cooling/heating in the Floquet bands and suggest methods to suppress heating via bandwidth-restrictions on the baths. We find that is possible, with appropriate dissipative engineering, to stabilize a controlled incompressible nonequilibrium steady-state resembling a ground state - a state we term the "Floquet insulator." We extend this analysis to include short-range interactions that contribute additional heating processes and show, under the same framework, that heating can be controlled with dissipation. In the process, we develop a simple effective model for the Floquet band densities that captures the essence of all the Floquet scattering processes and that is useful for ballparking experimentally-relevant estimates of heating. Next, we turn our attention to strongly-interacting closed Floquet systems and study how heating emerges through a proliferation of resonances. We find a novel integrab
Details
- Database :
- OAIster
- Notes :
- application/pdf, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1050270694
- Document Type :
- Electronic Resource