Back to Search Start Over

CO2 sublimation in Martian gullies: laboratory experiments at varied slope angle and regolith grain sizes

Authors :
Conway, S. J.
Carrivick, J. L.
Carling, P. A.
de Haas, T.
Harrison, T. N.
Sylvest, Matthew E.
Dixon, John C.
Conway, Susan J.
Patel, Manish R.
McElwaine, Jim N.
Hagermann, Axel
Barnes, Adam
Conway, S. J.
Carrivick, J. L.
Carling, P. A.
de Haas, T.
Harrison, T. N.
Sylvest, Matthew E.
Dixon, John C.
Conway, Susan J.
Patel, Manish R.
McElwaine, Jim N.
Hagermann, Axel
Barnes, Adam

Abstract

Martian gullies were initially hypothesized to be carved by liquid water, due to their resemblance to gullies on Earth. Recent observations have highlighted significant sediment transport events occurring in Martian gullies at times and places where CO2 ice should be actively sublimating. Here we explore the role of CO2 sublimation in mobilizing sediment through laboratory simulation. In our previous experimental work, we reported the first observations of sediment slope movement triggered by the sublimation of CO2 frost. We used a Mars regolith simulant near the angle of repose. The current study extends our previous work by including two additional substrates, fine and coarse sand, and by testing slope angles down to 10°. We find that the Mars regolith simulant is active down to 17°, the fine sand is active only near the angle of repose and the coarse sand shows negligible movement. Using an analytical model, we show that under Martian gravity motion should be possible at even lower slope angles. We conclude that these mass-wasting processes could be involved in shaping Martian gullies at the present day and intriguingly the newly reported CO2-creep process could provide an alternative explanation for putative solifluction lobes on Mars.

Details

Database :
OAIster
Notes :
application/pdf, Sylvest, Matthew E. ; Dixon, John C.; Conway, Susan J. ; Patel, Manish R. ; McElwaine, Jim N.; Hagermann, Axel and Barnes, Adam (2019). CO2 sublimation in Martian gullies: laboratory experiments at varied slope angle and regolith grain sizes. In: Conway, S. J.; Carrivick, J. L.; Carling, P. A.; de Haas, T. and Harrison, T. N. eds. Martian Gullies and their Earth Analogues. Special Publication, 467. The Geological Society of London, pp. 343–371.
Publication Type :
Electronic Resource
Accession number :
edsoai.on1056776876
Document Type :
Electronic Resource